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ABSTRACT
Synchronous programs have been widely used in the design
of safety critical systems such as the flight control of Airbus
A-380. To validate the implementations of synchronous pro-
grams, it is necessary to map the program’s logical time (mea-
sured in logical ticks) to physical time (the execution time
on a given processor). The static computation of the worst-
case execution time of logical ticks is called Worst Case Reac-
tion Time (WCRT) analysis. Several approaches for WCRT
analysis exist: max-plus algebra, model checking, reachability
and integer linear programming (ILP). Of these approaches,
reachability, model checking and ILP provide reasonably pre-
cise worst case estimates at the expense of longer analysis
time. Apart from max-plus based approaches, which can pro-
duce large overestimates, the existing approaches suffer from
the state space explosion problem. In this paper, we develop
a new ILP based approach, called ILPc, which exploits the
concurrency explicitly in the ILP formulation to avoid the
state space explosion problem. Through extensive bench-
marking we demonstrate the efficacy of the approach: for
complex programs, ILPc is often orders of magnitude faster
compared to the existing approaches, while achieving same
level of precision. Thus, this paper paves the way for scalable
WCRT analysis of complex embedded systems designed using
the synchronous approach.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special purpose
and application based systems—Real-time and embedded sys-
tems

General Terms
Languages, Verification, Performance

Keywords
Integer linear programming, Scability, Static timing analysis,
Synchronous languages

1. INTRODUCTION
Synchronous languages are ideal for designing safety critical

applications as they are based on a formal model of compu-

tation [5]. This leads to a simpler temporal semantics, which
guarantees deterministic concurrency and consequently facil-
itates the verification of safety properties. The synchronous
semantics divides the execution of a program into a sequence
of discrete instants, called ticks. During each tick, the en-
vironment is sampled at the beginning, then computations
take place, and the computed outputs are emitted at the end.
Since the environment is sampled only once in each tick, it
is essential to ensure that the worst case execution time of
a tick must be less than the minimum inter-arrival time of
events from the environment (timing correctness). This is
known as the synchrony hypothesis [5], and the static compu-
tation of the worst case execution time of a tick is known as
Worst Case Reaction Time (WCRT) analysis [8, 7, 15].

In [12], an Integer Linear Programming (ILP) based WCRT
analysis is proposed. This approach first compiles a syn-
chronous program into a sequential control flow graph (SCFG),
from which the sequential C code is generated. Then the con-
ventional ILP formulation for SCFG is applied to compute
the WCRT. Subsequently, they extended this work with an
additional tick transition automaton in [11], to improve the
precision by pruning infeasible paths.

A model checking based approach for WCRT analysis is de-
veloped in [4]. The program is modelled as a set of interacting
finite state automata that are synchronously composed. Com-
puting the WCRT is formulated as a model checking question.
This approach has the ability for more complex infeasible path
pruning than the ILP approach, and can often provide tighter
WCRT estimates as illustrated in [4]. Recently, a reachability
based WCRT analysis is proposed in [13] which achieves the
same precision as the model checking approach in [4] while
having shorter analysis time.

All of the presented approaches are adaptations of exist-
ing worst case execution time analysis techniques, that were
developed primarily for sequential programs [16], and may
not scale for programs with a large number of concurrent
threads (see Sec. 2). More recent work in [14] focuses on
the timing analysis of concurrent programs on multi-core ar-
chitectures. The behaviour of each thread on each core is
represented using a matrix. All possible inter-leavings and
synchronisation points between two threads (two matrices)
can be computed using the Kronecker product. The authors
assume that all threads are always active and there is no hi-
erarchy of threads. In addition, only small examples (control
flow graph with less than 10 nodes) are presented. Thus, it is
hard to validate the scalability of the approach for non-trivial
programs.

In this paper, we propose a new ILP based approach for
WCRT analysis, called ILPc, which is suitable for large multi-
threaded synchronous programs. The key idea is to con-
sider the concurrency and synchronization inherent in the
synchronous programs, so as to derive appropriate ILP con-
straints. As a consequence, we not only avoid the state-space
explosion problem but also produce results that are as precise
as the existing approaches [4, 11, 13]. Benchmarking demon-
strates that, for large programs, the proposed approach is or-



ders of magnitude faster than the existing approaches, while
providing the same precision. To the best of our knowledge,
the proposed approach, for the first time, paves the way for
scalable timing analysis of large synchronous programs.

This paper is organized as follows. Sec. 2 presents a moti-
vating example. Sec. 3 presents an intermediate format, called
Timed Concurrent Control Flow Graph (TCCFG), whi-ch is
used in the analysis. Sec. 4 presents the proposed approach
for WCRT analysis. The proposed technique is benchmarked
against the approaches in [4, 11, 13], where the methodology
and results are described in Sec. 5. Further discussions of the
results are presented in Sec. 6. The paper is concluded in
Sec. 7.

2. MOTIVATING EXAMPLE
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Figure 1: FSM representation of a 3-threaded syn-
chronous program.
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Figure 2: Execution trace.

In a synchronous program, concurrent threads execute in a
lock-step manner. During a tick, each participating thread
executes until it reaches an EOT (end of tick) or a pause
statement, and threads will only advance to the next tick
when all the participating threads have reached their respec-
tive EOT/pause statements. The EOT/pause statements could
be considered as state-boundaries of a thread. Consequently,
threads can be represented in an abstracted manner as Finite
State Machines (FSMs). During each tick of the program,
all FSMs will take exactly one transition. Fig. 1 shows an
example of three concurrent threads, with execution costs, in
processor clock cycles, labelled beside each state. An example
execution trace is shown in Fig 2. During the first tick (tick
1 ), the FSMs T1, T2 and T3 execute states A1, B1 and C1
respectively. The execution continues in a tick-by-tick fash-
ion. We use this motivating example (Fig. 1) to illustrate the
distinction between the different approaches. The existing
approaches for WCRT analysis can be broadly classified into
two categories, either summation based or state exploration
based.

2.1 Summation Approaches
Max-plus [8] and conventional ILP are summation based

approaches, which compute the WCRT by summing up the
worst case execution time of each thread. Applying a sum-
mation based approach to the motivating example results in
a computed WCRT of 40 clock cycles.

WCRT = MAX(T1) + MAX(T2) + MAX(T3)

= A3 + B1 + C2 = 20 + 10 + 10 = 40

However, the combination of states A3, B1 and C2 is infea-
sible as B1 and C2 will never execute together in the same
tick. Hence the computed WCRT will never occur during ac-
tual execution. This mismatch of states between concurrent
threads is known as the tick alignment problem [15].

2.2 State Exploration Approaches
On the other hand, the techniques such as [4, 11, 13] resolve

the tick alignment problem by modelling the tick transitions
of the program, thereby computing the execution time of all
the feasible combinations of states. Applying a state explo-
ration based approach to the motivating example results in a
computed WCRT of 35 clock cycles.

A1 + B1 + C1 = 25; A2 + B2 + C2 = 28;

A3 + B1 + C1 = 35; A1 + B2 + C2 = 23;

A2 + B1 + C1 = 30; A3 + B2 + C2 = 33;

WCRT = MAX(25, 28, 35, 23, 30, 33) = 35

State exploration based approaches can achieve better pre-
cision compared to summation based approaches at the ex-
pensive of longer analysis time. This trade-off between preci-
sion and scalability presents a challenge in computing precise
WCRT for large multi-threaded synchronous programs.

However, consider the case of revising the program where
the cost of B2 increases to 15. In this case, summation based
approaches would produce the same WCRT as state explo-
ration based approaches, while having a much faster analysis
time, since the computed worst case coincides with aligned
ticks (A3, B2 and C2). This shows that summation based ap-
proaches are not always less precise. Based on this observa-
tion, we develop an alternative approach using ILP that is
tailored for large synchronous programs. It uses an idea sim-
ilar to iterative Counterexample Guided Abstraction Refine-
ment [9] to avoid the exploration of the complete state-space,
thereby a better amortised analysis time compared to existing
approaches, while achieving the same level of precision as the
existing state exploration based approaches.

2.3 Our Approach (ILPc)
We first develop an ILP model that computes the WCRT

without considering tick alignment. We consider this longest
execution path and then check whether the ticks in this path
actually align. If the verification returns a positive answer,
we have computed the final WCRT. If, on the other hand,
the verification returns a negative answer (e.g., A3, B1 and
C2 in Fig. 1), we refine the ILP constraints to reflect this in-
feasible combination of states, then recompute a new WCRT
and repeat the verification of tick alignment. The analysis
terminates when the verification returns a positive answer.
We envisage that, for real-life benchmarks, ILPc can return
a positive verification result without having to explore the
full state-space. The central tenet of the paper is founded on
the above hypothesis of amortizing the performance of ILP for
concurrent programs through this iterative refinement process.

The main contributions of this paper are as follows.

• We propose an iterative WCRT analysis framework, whi-
ch produces tight estimates and is scalable for large
synchronous programs. Unlike the existing approaches,
where analysis must be completed in order to produce
a safe WCRT estimate, the proposed framework can be
stopped at any time after the initial iteration of analysis
and still able to produce a safe WCRT estimate.

• We extend the conventional ILP technique for SCFG
to model TCCFG [3]. Our approach directly models
the semantics of synchronous programs: logical ticks,
concurrent threads, and preemptions.

• Orthogonal to the control flow graph based ILP model,
we developed another ILP based technique for verifying
the tick alignment of a given execution path. This tech-
nique along with the ILP model achieves precise WCRT
estimations.



3. PRET-C AND TCCFG
In this section, we briefly discuss about (1) the execu-

tion semantics of a synchronous programming language, (2) a
method for capturing the timing properties of an underlying
architecture and (3) an intermediate format that captures the
execution semantics of the program and the timing properties
of the execution platform in a single control flow graph.
Synchronous languages: Esterel [6] and SCADE [2] have
been successfully used for the design of safety-critical embed-
ded systems. However, C remains the language of choice for
most embedded applications. Hence, we select a recent syn-
chronous C variant called PRET-C [3]. PRET-C is based on
a set of simple macros that extends C with synchronous con-
currency and preemption. In this paper, we formulate ILPc
using the intermediate format of PRET-C called TCCFG [3].
Our approach, however, is generic and applicable to other
synchronous languages.
Modelling the underlying architecture: To compute the
execution time of a program, one must model the behaviour
of hardware components such as caches with their replace-
ment policies, and pipelines with their control and data haz-
ards [16]. In most static analysers, the hardware components
are first analysed to compute the worst case execution time
of each instruction. This process is known as micro-analysis.
After micro-analysis, a Control Flow Graph (CFG) of the pro-
gram is generated where the nodes are annotated with execu-
tion costs. This annotated CFG becomes the input for macro-
analysis, where the WCRT of the program is computed. In
this paper, our emphasis is on macro-analysis. Thus, for the
rest of the section we briefly describe our execution time an-
notated control flow graph which becomes the input to the
macro-analysis presented later in Sec. 4.
Intermediate format: TCCFG consists of fork and join
nodes for capturing the concurrency. Abort start and abort
end nodes for capturing preemption. EOT nodes for captur-
ing the tick boundaries of a thread. In addition, there are
conventional nodes such as computation and condition.
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Figure 3: A running example of TCCFG.

Fig. 3 presents an example TCCFG, which will be used to
demonstrate ILPc. Each node is labelled with a unique ID
prefixed with ‘B’, and each edge is labelled with a unique ID
prefixed with ‘E’. The number beside each node represents
the execution cost of the node on a given execution platform.
In this paper, these costs are derived by using a well known
approach [10].
Tick Execution path Notes

1 E0→E1→E2→E5→E6→E13

2 E3→E2→E7→E8→E14→E15

3a
E3→E2→E9→E10→E12→E16→E17→E19 T1 and T2

E20→E21 terminate

3b E3→E2→E9→E10→E12→E16→E17→E18 T1 terminates

3c E3→E4→E21 Abort condition
evaluates to true

Table 1: Tick snapshot of the running example
To understand the control flow of the example TCCFG,

the execution traces of first three ticks are shown in Tab. 1.
The first column represents the ticks (instants of the program
execution). The second column captures the execution path
of a tick by showing the active edges in their execution or-
der. Finally the third column describes the events during the
execution of each tick.

The PRET-C semantics defines that concurrent threads in
a TCCFG execute in a statically defined total order, from
the left most thread (i.e., highest priority) to the right most
thread (i.e., lowest priority). When a thread spawns child
threads, it suspends itself. For the execution traces in Tab. 1,
the abort condition is false unless explicitly stated in the
Notes column. During the first tick, the thread T0 executes
the abort start node B1 (E0) to spawns the threads check-
Abort and abortBody, and suspends itself. Then the thread
checkAbort (the left most thread) executes until it reaches
the EOT node B3, which marks the end of its execution in the
current tick. subsequently, the thread abortBody spawns two
threads, T1 and T2, by executing the fork node B4 (E5). Fi-
nally the thread T1 reaches an EOT node (B5) followed by the
thread T2 (EOT node B10). At this point all active threads have
reached their EOT nodes, completing the first tick. Hence, the
control flow advances to the second tick.

In the second tick, all threads resume from the EOT nodes
that they reached in the first tick, and execute until they
reach an EOT node. The execution order of the threads is
checkAbort, T1 and T2.

Depending on the evaluation of the condition nodes B2,
there are three different scenarios for the execution traces of
the third tick. For distinction, the three different scenarios
are labelled as 3a, 3b and 3c in Tab. 1. A join node only
executes when all the child threads inside the fork and join
pair have terminated (e.g., T1 and T2 in the B4 and B15 pair).
For instance, in scenario 3a, both T1 and T2 terminate (i.e.,
reach the join node), leading to the execution of the join
node B15, which activates its outflow edge E20. In the case
where only T1 terminates, which is presented in the scenario
3b, the join node does not execute. Preemption in TCCFG
happens when the control flow reaches an abort end node,
which preempts all the threads between the abort start and
abort end pair, and the control flow continues on the next
node of the abort end node. The scenario 3c shows such a
case, where the threads T1 and T2 are preempted.

4. THE ILPC FORMULATION
Fig. 4 shows the overview of ILPc. Two models are first gen-

erated from the TCCFG by processes 1 and 2, that are called
ILPbase and tick expressions. ILPbase is an ILP model that
captures the control flow of the TCCFG, while the tick ex-
pressions are mathematical expressions that capture the tick
transition information. After generating these two models,
the analysis enters a process of iterative refinement (processes
3-5). Similar to the convention ILP technique, during pro-
cess 3, ILPbase is solved to obtain a WCRT estimate, and its
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Figure 4: Overview of ILPc.

corresponding execution path is extracted from the variable
values in the solution. Subsequently, this execution path is
verified against the tick expressions in process 4. If the partici-
pating ticks in this execution path can be aligned, the analysis
finishes, and the computed WCRT is the final WCRT. Oth-
erwise a new ILP constraint is generated in process 5 and is
appended to ILPbase to eliminate the infeasible tick combina-
tion. Then the analysis starts over again from process 3. The
following subsections will describe these processes in details
as we analyse the WCRT of the example TCCFG in Fig. 3.

4.1 Process 1: Formulation of ILPbase
While the conventional ILP formulation for synchronous

programs [12] works over a SCFG, we formulate ILPbase to
work over a TCCFG. This enables us to directly capture
ticks, concurrency and preemptions of a synchronous program
through modelling the execution of EOT nodes, fork and join
nodes, and abort start and abort end nodes, and thereby
improve the precision of the ILP model. The tick transition
information is not captured in ILPbase as it requires explor-
ing the full state-space in order to generate all the ILP con-
straints [11].

The formulation for ILPbase is based on the same mod-
elling principle as the conventional ILP technique for SCFG.
Generating ILPbase is achieved in two steps, which are (1)
describing the calculation of the total execution cost in the
objective function, and (2) modelling the control flow using
ILP constraints. Same as the conventional ILP technique, the
objective function of ILPbase is formulated as follows:

Objective function =

n∑
i=1

Ei × ci

In the formulation, n is the total number of edges in the
TCCFG, Ei is the variable that represents an edge and ci
is the execution cost that is associated with the edge. In gen-
eral, the execution cost of each node is associated with all
its inflow edge(s), because a node executes when the control
flow reaches it. However, join nodes are exceptions. A join
node can receive multiple active inflow edges from concurrent
threads during a tick, and it can execute just once, or may
not execute at all depending on whether all child threads have
terminated. Hence, the execution cost of each join node is
added to its outflow edge. For example, the cost of B15 is
added to E20 instead of E12 and E19 (i.e., both have 0 cost),
and the associated cost of E20 is 15 (i.e., 0+15).

We extend the formulation of ILP constraints of the con-
ventional ILP technique to model the complex control flow in
TCCFGs, such as preemption. The conventional control flow
at computation and condition nodes are captured using the
conventional ILP technique. To simplify the required analysis
and enable better utilisation of inequality in ILP constraints,
the following characteristics of synchronous programs and ILP
models are taken into account in the formulation.

• Synchronous programs forbid instantaneous loops and
recursion [5], so each edge can only be active at most

once during a tick. Hence the values of the integer vari-
ables in the ILP constraints, which represent the edges
in the TCCFG, are binary (Ei ∈ 0, 1). Each edge can
be either inactive (‘0’) or active (‘1’).

• Since the objective function is being maximized (i.e.,
computing for the worst case time) and all the edges
have a positive contribution to the objective function (i.e.,
the execution costs of all nodes are non-negative inte-
gers), the ILP solver will set the values of the variables
to ‘1’, whenever possible.

The following sections will illustrate the extended formu-
lations for ILP constraints, which are specifically developed
for synchronous programs. In our formulation, we define the
following two terminologies:

• The outflow edge of an EOT node or the start node will
be called an EOT edge. For example, E0, E3 and E7 are
EOT edges.

• For a thread named Tn, let EOTTn represents all the EOT
edges of this thread. For example, in the example TCCFG
(Fig. 3), EOTT0 consists of E0 and E22, and EOTT1 consists
of E7 and E9.

4.1.1 Tick constraints
An execution path of one tick always start from EOT edges,

and end at EOT nodes, hence we can emulate the execution of
one tick by establishing constraints between EOT edges. The
ILP constraints should enforce the following 3 behaviours.

1. Each thread can have at most one active EOT edge.

2. All the EOT edges in the child threads should be inac-
tive if their parent thread has an active EOT edge.

3. If a thread has more than one fork/abort start node in
sequence or under different branches, only one of them
can have active EOT edges in its child threads.

To capture the above behaviours, the ILP constraints are for-
mulated from the global view of the TCCFG. The EOT edges,
out of which at most one can be active during a tick, are clas-
sified into one group. And for each group, the following ILP
constraint is generated to ensure at most one of the EOT
edges in the group can be active.∑

EOT edges in a group ≤ 1

EOT edges can be effectively grouped by analysis the thread
hierarchy of the TCCFG.

T0

checkAbort abortBody

T1 T2

Parents

Child threads

Figure 5: Thread hierarchy of the running example.

For example, Fig. 5 shows the thread hierarchy of the TCCFG
in Fig. 3. The EOT edges of each thread can be grouped ac-
cording to the thread hierarchy, from each leaf thread (e.g.,
EOTT1) to the root thread (i.e., EOTT0). For example, the ex-
ample TCCFG has the following three groups.

a. checkAbort (E3) → T0 (E0,E22)
b. T1 (E7,E9)→ abortBody (none)→ T0 (E0,E22)
c. T2 (E14, E16)→ abortBody (none)→ T0 (E0,E22)

The following ILP constraints are generated from the three
groups to enforces behaviour 1 and 2.

a. E3 + E0 + E22 ≤ 1

b. E7 + E9 + E0 + E22 ≤ 1

c. E14 + E16 + E0 + E22 ≤ 1



In this example , we can only illustrate how to generate ILP
constraints to enforce behaviours 1 and 2, as there is no thread
that has more than one fork/abort start node (requirement
of behaviour 3). If the example TCCFG has a thread, which
has more than one fork/abort start nodes, additional ILP
constraints have to be generated to enforce behaviour 3, us-
ing similar grouping technique. The ILP constraints should
mutually exclude the execution of child threads which are un-
der different fork/abort start nodes from the same thread.
While not introducing restrictions for child threads that can
execute concurrently.

4.1.2 Fork constraints
Concurrent threads are enclosed by a pair of fork and join

nodes. Two sets of ILP constants are formulated to model the
forking and joining of concurrent threads, one for modelling
the control flow at the fork node (Sec. 4.1.2) and the other
one for modelling the control flow at join node (Sec. 4.1.3).

When the control flow reaches a fork node, all its out-
flow edges should be active to represent the spawning of child
threads. This is modelled using the following ILP constraints,
which are generated with respect to each fork node.

∀n ∈ fork nodes, ∀Eout ∈ outflow edges of n

Eout =
∑

Ein

where Ein ∈ inflow edges of n

For example, for the fork node B4 in Fig. 3, the following ILP
constraints are generated.

B4: E6 = E5, E13 = E5

4.1.3 Join constraints
A join node executes when the last child thread between a

fork-join pair (e.g., B4 and B15) terminates. For example, the
join node B15 executes (i.e., E20 is active) when both T1 and
T2 have terminated. It is not essential for all child threads to
terminate in the same instant (tick) and they may terminate
during different instants. However, the instant of execution
of a join node always coincides with the instant when the last
child thread of the associated fork-join pair terminates. To
capture this behaviour, the formulation focuses on constrain-
ing the outflow edge of a join node. Each join node has only
one outflow edge, and the outflow edge is inactive if any of
the following conditions is satisfied.

1. If all inflow edges of a join node (e.g., E12 and E19 for
B15) are inactive, the outflow edge should be inactive.

2. If any child thread (e.g., T1 for the join node B15) has
an active edge, and its execution does not reach the join
node (e.g., E12 is inactive for T1).

In all other cases, the outflow edges of join nodes should
be active. To model the first condition, the following ILP
constraint is generated with respected to each join node.

∀n ∈ join nodes

Eout ≤
∑

Ein

where Eout ∈ the outflow edge of n

Ein ∈ the inflow edges of n

Based on the settings that are described at the beginning
of Sec. 4, Eout will be set to ‘0’ if none of the edges in Ein

are active, and will be set to ‘1’ otherwise. For example,
the following ILP constraint is generated to model the first
condition for the join node B15.

B15: E20 ≤ E12 + E19

To capture the second condition, ILP constraints are gen-
erated from the global view of the TCCFG. For each nested
child thread inside the fork-join pair (e.g., T1 and T2 for the

B4 and B15 pair), the following ILP constraint is generated.

∀t ∈ nested child threads between the fork node f

and the join node j pair

(1−
∑

EOTt − Espawn) + (
∑

Eterminate) ≥ Eout

where Espawn ∈ The outflow edge of f that spawns t

Eterminate ∈ The inflow edges of j that are from t

Eout ∈ The outflow edge of j

The left hand side of the ILP constraint consists of two
parts, which are enclosed by two pairs of brackets. The first
part of the ILP constraint captures whether a child thread
has active edges. In the scope of a thread, all its execution
paths can only start from the edge that spawns it (e.g., E6
for T1), or the EOT edges inside them (e.g., E7 and E9 for T1).
Hence we can use these edges to represent all the edges in a
thread (i.e., if none of these edges is active, no edges in the
thread is active). Also, only one of these edges can be active
at most (Sec. 4.1.1). The value of the first part is ‘1’ if and
only if all the edges in the thread are inactive; ‘0’ otherwise.

The second part of the ILP constraint captures thread ter-
mination. The value of the second part is ‘1’ only when the
execution in the child thread reaches the join node (e.g., E12
is active in T1), ‘0’ otherwise. The outflow edge of the join
node is forced to be inactive if both parts of the ILP constraint
are ‘0’, otherwise it will be set to ‘1’ by the ILP solver. As an
example, the following ILP constraints are generated for the
example TCCFG to capture the second condition.

T1: (1− (E7 + E9)− E6) + (E12) ≥ E20

T2: (1− (E14 + E16)− E13) + (E19) ≥ E20

4.1.4 Abort start constraints
In a TCCFG, preemption is captured by a pair of abort

start and abort end node. To capture the behaviour of pre-
emption, three sets of ILP constraints are generated, (1) for
modelling the control flow at an abort start node (Sec. 4.1.4),
(2) for modelling the control flow at an abort end nodes (Sec. 4.1.5)
and (3) for modelling the preemption of threads (Sec. 4.1.6).

An abort start node is similar to a fork node, which al-
ways spawns two threads, a checkAbort thread and a abort-
Body thread. The priority of these two threads depends on the
type of abort: strong or weak. For the TCCFG in Fig. 3, the
checkAbort thread has the higher priority than the abort-
Body thread as it is a strong abort. In the following formula-
tion, these two threads will be referred as the higher priority
thread and the lower priority thread respectively. To capture
the control flow of an abort start node, the following ILP
constraints are generated.

∀n ∈ abort start nodes

Ehigh =
∑

Ein

Elow ≤
∑

Ein

where Ein ∈ inflow edges of n

Ehigh ∈ the outflow edge of n that spawns the higher

priority thread

Elow ∈ the outflow edge of n that spawns the lower

priority thread

When the control flow reaches an abort start node, the
higher priority thread is always spawned and executed. Hence
the equal sign is used in the ILP constraint. The lower priority
thread is only spawned and can execute if it is not preempted
by the higher priority thread. Hence the less or equal sign is
used, which allows the ILP constraints in Sec. 4.1.6 to set the
value of Elow to ‘0’ when preemption takes place. Otherwise
Elow will be set to ‘1’ by the ILP solver.

For example, the following ILP constraints are generated



for the abort start node B1.

B1: E1 = E0

E5 ≤ E0

4.1.5 Abort end constraints
The control flow at an abort end node is similar to a com-

putation node. The outflow edge of an abort end node is
active if any of its inflow edges is active. This control flow
can be captured by the following ILP constraint.

∀n ∈ abort end nodes

Eout =
∑

Ein

where Eout ∈ The outflow edge of n

Ein ∈ The inflow edges of n

This ILP constraint implies that at most one of the inflow
edges of an abort end node can be active, as the values of all
variables (e.g., Eout in the ILP constraint) are bounded to be
either ‘0’ or ‘1’. This is a correct implication. Although the
inflow edges of an abort end node are from two concurrent
threads (e.g., E4 and E20 for B16 are from checkAbort and
abortBody), they cannot be active together as preemption
takes place when any of them is active. As an example, the
following ILP constraint should be generated for the B16 node
in Fig. 3.

B16: E21 = E4 + E20

4.1.6 Preemption constraint
Preemption takes place when the control flow reaches an

abort end node. According to the execution semantics of
TCCFG, only the higher priority thread can preempt the
lower priority thread. The higher priority thread always ex-
ecutes first and only switches to next the thread when it fin-
ishes its execution in a tick.

For example, when the higher priority thread in the abort
(e.g., checkAbort in Fig. 3) reaches an abort end node (e.g.,
E4 is active), all the edges in the lower priority thread (e.g.,
abortBody) should be inactive, including its nested child threads,
as they are preempted. To capture this preemption behaviour,
the following ILP constraint is generated for the lower priority
thread and each of its nested child threads.

∀t ∈ The lower prioirty thread and its nested child

thread between the abort start node s and the

abort end node e.∑
(EOTt) + Espawn ≤ 1− Eexit

where Espawn ∈ the outflow edge of s that spawn the lower

priority thread

Eexit ∈ the inflow edge of e that is from the higher

priority thread

Similar to the formulation for join nodes in Sec. 4.1.3, all
the edges in the lower priority thread are captured by using
the edge that spawns the lower priority thread (e.g., E5 which
spawns abortBody) and EOT edges, as in the scope of the
lower priority thread, all the execution paths start with these
edges. As an example of the formulation, the preemption in
the example TCCFG is modelled by the following ILP con-
straints.

T1: (E7 + E9) + E5 ≤ 1− E4

T2: (E14 + E16) + E5 ≤ 1− E4

4.2 Process 2: Formulation of tick expressions
Formulating tick expressions is a key contribution of this

paper. They are derived orthogonally to perform the verifi-
cation of tick alignment over the longest tick computed by
ILPbase. We use the idea from affine functions in mathemat-

ics to identify a set of discrete instants when a given EOT can
be active and call them as tick expressions. Tick expressions
capture the pattern of execution of an EOT node in terms of
reference tick count , where reference tick count refers to the
number of ticks that have elapsed since the execution of the
reference node, and the reference node is the outermost parent
node.

1+1N (min:1)
0 (min:0)

1+2N (min:1)

2+2N (min: 2)

1+2N (min:1)

2+2N (min:2)

0 (min:0)

1+1N (min:1)

2+2N (min:2)

B0

B1

B5

B7

B10

B12

B15
B16

B17

B19

B4
B3

Figure 6: Abstracted TCCFG with tick expressions.

Fig. 6 shows the abstracted TCCFG of Fig. 3, where com-
putation and condition nodes are removed so as to focus
on the execution of the EOT nodes. The tick expressions are
displayed inside each node. As only the execution paths with
concurrent threads can cause a tick alignment problem, tick
expressions are only generated after a spawning node (i.e., an
abort start or fork node), and the top level spawning node
is used as the reference. For example, in Fig. 6 the abort
start B1 is the reference node. A reference node always has
the tick expression ‘0 (min: 0)’.

A tick expression consists of three elements: constant , vari-
able and min. For example, the tick expression for B5 is
‘1+2×N(min:1)’. The constant here is ‘1’, representing the
earliest instant that the control flow can reach the node. The
variable is ‘2×N’, where N ∈ Z+, represents the pattern of
recurrence of this EOT’s execution. The min for B5 is ‘1’ to rep-
resent the earliest execution of the node. The min property
is a lower bound for execution, it is need to precisely model
the execution of join nodes, which might not execute even
when the control flow has reached them. A tick expression is
essentially a set of numbers capturing the discrete instants of
execution of a given EOT relative to the reference node. For
example, the set of numbers corresponding to execution of
B5 is ‘1, 3, 5. . . ’, which means B5 can execute in the ’first,
third, fifth. . . ’ tick after the execution of the reference node
B1. More examples are presented in Appendix A to further
illustrate how tick expressions capture the execution pattern.

4.3 Process 4: Verifying An Execution Path
Execution path

Extract tick 
expressions

Tick expression

Build verification 
ILP model

ILPcheck

Has solution?

ILP solver

Tick cannot 
be aligned

Tick can be 
aligned

No Yes

Figure 7: Overview of the verification process.



After solving ILPbase (process 3 in Fig. 4), the computed
worst case execution path is checked against the tick expres-
sions for tick alignment. Fig. 7 shows the overview of the
verification process. We first identify the EOT and join nodes
in the execution path by checking the their outflow edges.
This is then used to extract their tick expressions. An ILP
model called ILPcheck is subsequently generated based on the
extracted tick expressions. ILPcheck is used to find a refer-
ence tick count that is to be included in all the extracted tick
expressions. This will help to determine whether the com-
bination of EOT nodes in the execution path is feasible. For
example, solving the ILPbase of the example TCCFG will
produce an execution path that has the EOT nodes B3, B5 and
B12. The following ILPcheck is then used to verify whether
these EOT nodes can actually align during execution.

B3: 1×N1 + 1×N2 = RTC

B5: 1×N3 + 2×N4 = RTC

B12: 2×N5 + 2×N6 = RTC

N1 = 1, N3 = 1, N5 = 1

RTC >= 2

Here, N1 to N6 and RTC (reference tick count) are non-
negative integer variables used in ILPcheck. The largest min
of all the tick expressions is ‘2’. Hence RTC must be equal
greater than ‘2’. The purpose of ILPcheck is to determine if
there is a solution for the given ILP constraints. The cost
of each variable is assigned to ‘1’, as they have no actual
effect and meaning in ILPcheck and an optimal solution is
not required. The ILP solver should be stopped as soon as
a solution is found. The above ILPcheck has no solution, as
the set of numbers for B5 (1, 3, 5. . . ) does not have any
number in common with the set of numbers for B12 (2, 4,
6. . . ). Hence, we can conclude that the EOT nodes B3, B5 and
B12 are infeasible during execution.

4.4 Process 5: New ILP Constraint
When an infeasible execution path is detected (e.g., the

verification failure example in the previous section (Sec. 4.3)),
a new ILP constraint will be generated and be appended to
ILPbase to eliminate the detected infeasible tick alignment.
The new ILP constraint is generated as follows:∑

EOT ≤ D − 1

where EOT ∈ The EOT edges in the exexcution path

D ∈ The total number of EOT edges in EOT

For the example in the previous section, the new ILP con-
straint is:

E3 + E7 + E16 ≤ 2

5. RESULTS
In this section, we present a comparison of ILPc relative

to the existing ILP based [11], model checking based [4] and
reachability based approaches [13]. The ILP approach in [11]
which is based on the Esterel language is reimplemented, and
we refer this as ILPs. ILPs takes a SCFG as input, which
is obtained from the TCCFG of each benchmarks. In this
benchmarking, the open source ILP solver lp solve [1] is used
to solve all the ILP models for ILPc and ILPs. The break-
at-first feature is enabled when solving ILPcheck models in
ILPc. The model checking-based and the reachability based
approaches are originally based on TCCFGs, and the exact
same tool chain as in [4] and [13] are directly used in this
benchmarking.

5.1 The Benchmark Process
The aim of the benchmarking is to evaluate the scalabil-

ity (analysis time and precision) of the proposed approach rel-
ative to the existing approaches. The benchmarking was eval-
uated on a Windows based machine using an Intel i7 820QM

processor with 8 GB of RAM.
The evaluation consists of two phases. In the first phase, we

evaluate the performance of these four approaches using two
sets of synthetic benchmarks. In the second phase, we com-
pute the WCRTs for a set of real-life synchronous programs
using the four approaches.

5.2 First Phase: Synthetic Benchmarking for
Scalability

We start by comparing the analysis time as the program
size (e.g., number of threads) grows. The analysis time of
ILPc is dependent on the number of iterations required to
find a solution and the computation time of each iteration.
The former aspect is not so much dependent on the program
size but is related to the structure of the program and the
distribution of execution costs. Hence, in order to elicit the
worst case and best case analysis time of ILPc for a given
program size, we created two sets of synthetic benchmarks.
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Figure 8: TCCFG template of the synthetic bench-
marks.

Fig. 8 shows the template of the two sets of synthetic bench-
marks, which has two threads T1_a and T1_b. The first set
of synthetic TCCFGs is generated by replicating these two
threads alternatively. This highly symmetrical structure and
execution cost distribution create the worst scenario for ILPc,
which is maximizing the number of iterations for a given num-
ber of program states. The second set of synthetic TCCFGs
is generated by only replicating T1_a. This will significantly
change the execution cost distribution, but keeping the exact
same structure and number of program states as the first set
of synthetic TCCFGs. The second set of benchmarks elicits
the best case scenario as ILPc can always find the WCRT in
the first iteration.
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Figure 9: Analysis time versus number of threads.

All four approaches are first benchmarked against the first
set of the synthetic TCCFGs. The number of threads in the
synthetic TCCFGs starts from 5, and increases by 1 each time
until the target technique is not able to complete the analy-
sis. The results are shown in Fig. 9. The computed WCRTs



Name LOC Threads WCRT ILPc iterations
Analysis Time (s)

ILPc ILPs Reachability Model Checking

ChannelProtocol 591 7 997 3 0.13 5.71 2.55 2.87

Flasher 816 7 617 2 0.19 11.6 3.22 3.36

RobotSonar 962 7 1874 1 2.43 14.93 7.06 7.02

Synthetic1 1287 7 2218 37 5.92 48.16 14.32 14.21

Synthetic2 1293 7 2514 13 2.45 55.19 15.12 14.9

DrillStation 1094 15 2751 73 4.38 171.8 3.46 6.05

CruiseControl 2302 25 1931 5 1.05 > 1 hr 21.19 65.4 & Out of memory

RailroadCrossing 2713 30 4472 2 1.63 > 1 hr > 1 hr 68.22 & Out of memory

WaterMonitor 3204 40 4631 1 3.93 > 1 hr > 1 hr & Out of memory 75.2 & Out of memory

Table 2: Analysis time summary

from the four approaches are identical. The analysis time of
ILPs, model checking and reachability approaches increases
exponentially as the number of threads increases. Eventually
the analysis time of ILPs and the reachability approach be-
comes impractical to measure with the benchmarks of greater
than 12 threads and 18 threads respectively. As for the model
checking approach, it runs out of memory with the 18-threads
benchmark. ILPc reaches its worst case performance with this
particular structure and cost distribution. Its analysis time
is labelled with ILPmax

c in Fig. 9, which more or less mimics
the performance of ILPs.

When benchmarking the four approaches against the sec-
ond set of synthetic TCCFGs, ILPs, model checking and reach-
ability based approaches do not have observable changes in
their analysis time. However, the analysis time of ILPc, which
is labelled with ILPmin

c in Fig. 9, reduces to less than 0.01 sec-
ond regardless the increase in the number of threads.
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Figure 10: Memory usage versus program states.

Fig. 10 shows the memory usage of the four approaches
during the analysis of the first set of benchmarks. The number
of program states for N threads is estimated as 3N , as each
thread has three states (including terminated state). The
overall trends of memory consumption of ILPmax

c (worst case
memory usage) and the other three approaches are about the
same. The memory footprint data for ILPs and ILPmax

c stop
at the benchmark with 11 threads (1.8× 105 states), as their
analysis time is impractical to measure. The model checking
approach starts with a very low memory consumption, which
dramatically increases after 5 × 104 states. In the end, the
reachability approach shows a much smaller memory footprint
than the model checking approach from 3×107 states onward.

In conclusion, the synthetic benchmarking reveals that ILPc’s
worst case performance is similar to ILPs but is worse than
model checking and reachability. However, we also observed
the best case of ILPc far exceeds the performance of the other
approaches. This happens when ILPc produces the WCRT in
the first iteration. Thus, we expect ILPc to have better amor-
tized performance in the average case.

5.3 Second Phase: Evaluation with Real-life
Benchmarks

We benchmark the four approaches [4, 11, 13] against a
set of real-life PRET-C programs. These programs are taken
from [17, 19] and two synthetic programs are added to illus-
trate the significance of tick alignment. These programs were
compiled into PRET-C using the existing tool chain [18]. The
details of these programs and benchmark results are shown in
Tab. 2. The largest program is WaterMonitor with 3204 lines
of C code and has 40 concurrent threads.

The WCRTs obtained from all four approaches are iden-
tical, which validates the correctness of ILPc. ILPs has the
steepest increase in analysis time, and it takes more than an
hour for large programs. As for model checking and reacha-
bility, the analysis time increases as the state-space grows.
Eventually the analysis for large programs, such as Rail-
roadCrossing and WaterMonitor, cannot finish due to long
analysis time (> 1 hr) or insufficient memory. For the six
small benchmarks (ChannelProtocol to DrillStation), the
average analysis time for ILPs, model checking and reacha-
bility are 51.2 seconds, 8.06 seconds and 7.62 seconds respec-
tively. None of these three approaches are able to compute
the WCRT of larger programs. Reachability [13] provides the
closest performance in comparison to ILPc.

In contrast, ILPc is able to compute the WCRTs of such
large programs very efficiently. The number of iteration ranges
from 1 to 73, and the average analysis time of all the bench-
marks is under 2.5 seconds, with peak 5.92 seconds for the
Synthetic1 program. The results also show that the analysis
time of ILPc is not always affected by program size.

6. DISCUSSIONS
ILPc demonstrates scalable performance in Sec.5.3, thanks

to its iterative analysis framework. In this section, we ex-
tend our analysis using the benchmark programs presented
in Tab. 2, to reveal the relationship between WCRT esti-
mates, analysis time, and number of iterations of ILPc. For
all the programs in Tab. 2 that took more than 3 iterations,
their WCRT estimates are plotted against the analysis time
in Fig. 11. The end of each iteration is marked on the lines.

Fig. 11 shows that the WCRT precision improves with the
number of iterations. This trend is best shown by the Drill-
Station (Fig. 11b) and Synthetic1 (Fig. 11c) programs, with
73 and 37 data points respectively. This is an interesting
property as it ties the WCRT precision to the elapsed analy-
sis time. In other words, the ILPc can be interrupted at any
time and still able to produce a reasonably precise and safe
WCRT estimate. The Synthetic2 program (Fig. 11d) demon-
strates a case where the WCRT precision stays the same for
iterations 5-7 and 9-11. However, the overall trend of the
Synthetic2 program is consistent with the others.

As for the analysis time, there is an extra overhead during
the first iteration of ILPc (presented as an offset in the anal-
ysis time axis), where the ILPbase is being solved for the first
time. This one time overhead may be caused by the initializ-
ing process of the ILP solver. After that the analysis time be-
tween iterations steadily increases at a slow rate. This may be
observed from the Synthetic1 program as the gap between it-
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Figure 11: WCRT V.S. accumulated analysis time

erations increases. In this benchmark set, ILPc demonstrates
the ability of improving the WCRT precision with very small
penalty in analysis time.

7. CONCLUSIONS
We have presented a new approach called ILPc specifically

targeting the timing analysis of synchronous programs. The
key idea of the proposed approach is based on an iterative
refinement process that starts with ILP constraints such that
the exploration of full state-space is avoided. Through an or-
thogonal state-space exploration process, we refine the ILP
constraints one at a time by exploring only the state-space
corresponding to the computed longest tick. Through exten-
sive benchmarking we have shown that the proposed approach
provides excellent amortized performance compared to exist-
ing approaches. In the future, we will extend the proposed
approach to deal with parallel programs, complex memory
architectures and processor models.

References
[1] ILP solver lp solve 5.5. http://lpsolve.sourceforge.net.

[2] P. A. Abdulla, J. Deneux, G. St̊almarck, H. Ågren, and
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APPENDIX
A. Tick expressions

In this section, we demonstrate tick expressions using TC-
CFGs with various structures. A tick expression consists of
three elements: the constant , the variable and the min. The
TCCFG in Fig. 12 shows the usage of min. The execution of
the join node follows the pattern of T1, but its earliest exe-
cution is limited by slowest thread, which is T2 and it takes 4
ticks to complete. Thus for the join node, min is 4.

Fig. 13 shows an example of a thread with two fork nodes
in sequence. In this case, the tick expressions of the child
threads are generated with respect to the fork node that
spawns them. The threads T1 and T2 can never execute to-
gether with T3 and T4, and this is enforced by the ILP con-
straints in ILPbase, hence the tick expressions can be gener-
ated separately for the two fork-join pairs.

Finally, Fig. 14 presents tick expressions for a TCCFG with
branching and nested loops. As tick expressions are affine
functions with lower bound, mathematical techniques can be
applied to merge or optimize them. For example, the tick
expression for the join node is the union of its predecessors’
tick expressions, which should contains the following three
tick expressions:

3 + 3N + 4N(min : 3)

4 + 3N + 4N(min : 4)

6 + 2N + 3N(min : 6)

These tick expressions can be merged and simplified mathe-
matically into ‘6+N (min:6)’, which captures the union of the
three sets of numbers of the three tick expressions above.
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Figure 12: Tick expressions example 1
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Figure 13: Tick expressions example 2
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Figure 14: Tick expressions example 3


