8A-2

Modular Scheduling of Distributed Heterogeneous
Time-Triggered Automotive Systems

Martin Lukasiewycz
TUM CREATE
Singapore
martin.lukasiewycz@tum-create.edu.sg

ABSTRACT

This paper proposes a modular framework that enables a
scheduling for time-triggered distributed embedded systems.
The framework provides a symbolic representation that is
used by an Integer Linear Programming (ILP) solver to de-
termine a schedule that respects all bus and processor con-
straints as well as end-to-end timing constraints. Unlike other
approaches, the proposed technique complies with automotive
specific requirements at system-level and is fully extensible.
Formulations for common time-triggered automotive operat-
ing systems and bus systems are presented. The proposed
model supports the automotive bus systems FlexRay 2.1 and
3.0. For the operating systems, formulations for an eCos-
based non-preemptive component and a preemptive OSEK-
time operating system are introduced. A case study from the
automotive domain gives evidence of the applicability of the
proposed approach by scheduling multiple distributed control
functions concurrently. Finally, a scalability analysis is car-
ried out with synthetic test cases.

1. INTRODUCTION

With the introduction of the FlexRay bus, the design para-
digm in the automotive domain shifted towards time-triggered
systems. In case the Electronic Control Units (ECUs) are
not synchronized with the bus, undesired delays and jitter
in the communication are possible. Therefore, a synchronous
time-triggered system that exploits the advantages of the high
data-rate and short transmission times of the FlexRay bus is
desirable. Functions that are executed periodically benefit
from such a time-triggered architecture, leading to an im-
proved control quality due to the deterministic behavior and
minimal jitter. At the same time, simulation, integration, and
testing efforts are reduced significantly due to the predictabil-
ity of the system. These properties make such time-triggered
systems ideal candidates for next-generation automotive ar-
chitectures. In particular, such architectures have a growing
need in electric vehicles due to the increased software and
electronics content.

Contributions of the paper. In this paper, a framework
based on Integer Linear Programming (ILP) is presented that
performs schedule synthesis for time-triggered systems. The
proposed modular framework is illustrated in Figure 1. The
scheduling is performed at task-level, compliant with the AU-
TOSAR specification. A model for the FlexRay bus including
versions 2.1 and 3.0 [1, 5, 15] is presented. For the operat-
ing systems, a non-preemptive scheduler based on eCos [4]
and the preemptive Last In - First Out (LIFO) scheduler in
OSEKtime [11] are introduced in the model. Finally, where
necessary, a generic formulation constrains the end-to-end de-
lay for each path in a function. This formulation has the fol-
lowing advantages: (1) The models of each component are
generated separately, (2) an incremental scheduling of legacy
systems is possible, and (3) there are no restrictions on the

Supported in part by the National Research Foundation
(NRF), Singapore.

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

665

Reinhard Schneider, Dip Goswami,

Samarjit Chakraborty
TU Munich
Munich, Germany
{reinhard.schneider, dip.goswami,

samarjit.chakraborty}@rcs.ei.tum.de
Bus Scheduling

Resource Scheduling Timing

‘ eCos ‘ ’ FlexRay 2.1 ‘

‘ OSEKtime ‘ ’ FlexRay 3.0 ‘ ‘ Timing Constraints

ILP formulation

ILP solver

Schedule

Simulation, Integration, Testing

Figure 1: Design flow of the proposed modular scheduling
framework.

maximal end-to-end delays or distribution of the application
across a communication cycle.

Organization of the paper. The remainder of the paper
is outlined as follows: Section 2 discusses related work. Sec-
tion 3 introduces the scheduling framework, including the lin-
ear formulations for the eCos-based and OSEKtime operating
systems as well as the FlexRay bus 2.1 and 3.0. In Section 4,
a case study and scalability analysis are presented. Finally,
Section 5 summarizes the contributions of the paper.

2. RELATED WORK

Time-triggered systems in the automotive domain are based
on the FlexRay [5] bus system. FlexRay was developed by
an industrial consortium, including BMW, Daimler, General
Motors, and Volkswagen. A large part of recent research fo-
cuses on scheduling the bus for the asynchronous case, i.e.,
the ECUs are not synchronized to the bus. The goal of these
scheduling strategies is mostly the minimization of the re-
quired number of slots in order to ensure the extensibility of
the bus for future applications. The scheduling of the static
segment is discussed in [3, 6, 10, 13] while the dynamic seg-
ment scheduling is presented in [7]. Another field of research
on time-triggered systems in the automotive domain is the
determination of end-to-end delays of FlexRay-based systems
for the dynamic segment [8, 12].

Recently, [16, 17] presented an ILP formulation for the syn-
chronous scheduling of FlexRay-based systems at job-level. In
contrast to this, the proposed approach in this paper provides
a framework for scheduling buses and ECUs at the task-level,
thereby enabling an AUTOSAR compliant system. Moreover,
it is not necessary to model the entire system within the gen-
eral hyper-period of all functions. By providing a modular ap-
proach that allows to model each ECU and bus independently,
necessary end-to-end latency constraints are added separately
to restrict the delays of functions. This enables a more effi-
cient formulation and better extensibility. In this paper, it is
shown how to model either FlexRay 2.1 or 3.0 for the buses

8A-2

ECU, ECU3 ECU,

mi m2 FlexRay

(a) Topology

«—FlexRay cycle—

ECU;

]
ECU, |
|
FlexRay : »hml ’/»IJWQ :
1 |
| |
e |)
+ : 1

k——end-to-end delay—

(b) Scheduling

Figure 2: Example topology (a) with three resources R =
{ECU,, ECU,, ECUs}, executing a function with three tasks
and two messages. A scheduling (b) determines the start
times of all tasks as well as the slot assignment for all mes-
sages.

as well as a non-preemptive operating system based on eCos
and the OSEKtime operating systems for ECUs.

3. SCHEDULING FRAMEWORK

In the following, the scheduling framework is presented.
An illustration of the design flow is given in Figure 1. The
models for resource scheduling, bus scheduling, and end-to-
end timing constraints are defined separately and added to
the ILP formulation. An ILP formulation consists of a set
of linear constraints expressed as equalities and inequalities,
respectively, with either real or integer variables, see [2]. In
the next step, the ILP formulation is solved with an ILP solver
to obtain a feasible schedule. Finally, this schedule might be
simulated, integrated into a full system, and tested.

In this paper, an objective function is applied in the ex-
perimental results with the goal to minimize the end-to-end
latencies. However, the focus of this paper is the presentation
of a modular framework and therefore a detailed discussion
of possible objective functions is omitted. Potential objective
functions are discussed in [16] and they are also applicable
here.

This section is organized as follows. First, the problem def-
inition is presented using an illustrative example. The task
scheduling for the ECUs is introduced for the time-triggered
non-preemptive eCos-based and the preemptive LIFO OSEK-
time operating systems. The message scheduling is presented
for both FlexRay 2.1 and 3.0. Finally, constraints are intro-
duced to define an upper bound for the end-to-end delay of
functions.

3.1 Problem Definition

We consider a system with a single bus and multiple ECUs
as illustrated by a system consisting of three ECUs in Fig-
ure 2(a). Each ECU might also have dedicated links to sen-
sors or actuators. Note that the following formulation can
be extended in a straightforward manner to consider multiple
buses.

An application is executed on the system and usually con-
sists of multiple independent functions. Each function con-
sists of data-dependent processes that communicate directly if
they are implemented on the same ECU, adjacent sensors, or
actuators. Each function and its processes are executed with

a specific period with a predefined offset. If the communica-
tion is carried out over the bus, a message has to be sent in a
specified slot on the FlexRay bus. Each function might have
a specified maximal delay that depends on the characteristics
of the function. The hardware setup is based on prototype
components from Elekirobit (EB) and the software layer was
synthesized using SIMTOOLS and a model-based design flow,
see [14].
The system is defined as follows:

o T'=T,UT,, - set of all tasks with 7}, being processes
and T, being messages

e R - set of all ECUs/sensors/actuators

e target : T — R - determine the target resource of a
process t € T}, and the sender of a message m € Tp,.

Based on the operating systems and scheduling policies of
the ECUs as well as the bus scheduling, a feasible schedule
needs to be determined that respects all given end-to-end de-
lays. A schedule for the example in Figure 2(a) is given in
Figure 2(b). The schedule is defined by specific start times for
each process as well as a slot assignment for the messages.

3.2 Resource Scheduling

The processes on each ECU (including sensors and actua-
tors) have to be scheduled in compliance with the used oper-
ating system scheduler. Here, the processes T; are scheduled
for each ECU r € R separately. Each process is associated
with its period p; and worst-case execution time e;.

The given constants are defined as follows:

o T, = {t|target(r) = t,t € T,} - set of all processes
t € T, running on ECU r € R

e p; - period of process t € T),

e ¢, - execution time of process t € T},

e H. = tltenﬁ(pt) - hyper-period of ECU r € R (lem deter-

mines the least common multiple)

For each ECU, the schedule is determined by the offset of
each process (offset from the start of the first communica-
tion cycle of the bus). Thus, the following value has to be
determined for each process:

e o, - offset of process t € T),

In the following, the start time of processes equals the offset,
i.e, o = s¢. The formulation for a non-preemptive time-
triggered scheduling and a preemptive scheduling is proposed.
For the non-preemptive case, an eCos-based operating system
is assumed. For the preemptive scheduling case, OSEKtime
is used which is using a LIFO scheduler.

3.2.1 eCos-based System Scheduling

An eCos-based operating system is used as a non-preemptive
time-triggered component. Thus, each process is started with
a predefined offset between 0 and its period and always fin-
ishes its execution before any other process is started. An
example of the eCos-based scheduling with two processes is
illustrated in Figure 3.

The formulation for the eCos operating system requires the
following variables:

e s¢ € R - start time of process ¢t € T),
fi € R - finish time of process t € T},
ofy € {0,1} - offset for finish time t € T,

yi’j~ € {0,1} - 1 if job 4 of process t € T, finished before
job j of process t € T}

The bounds on the variables are determined as follows:
Vre R,iteT,:
0<s¢ <ps (1)

0<f <ps (2)

8A-2

i fe, o ft, : . zi’jg € {0,1} - 1 if job i of process t € T, is preempted
k—Stq —) : k—Stq —) : ’

by job j of process € Tj

j The bounds on the variables are determined as follows:

ECUECOS — Vr S R,t c Tr :
to to 0<st < pt (6)

Kfft24h‘ : 0<f <p; (7)
I, N
. Sta . ¥reRte T, i={0,. 20 1}
F igure 3: Example of an eCos-based .non-preemptive schedul- e <fi <2-pe (8)
ing for two processes t1 and t» (perlods: 2-py =pi,) on a The constraints are determined as follows:
resource FCU.cos. Preemption is not allowed such that two e o 2-H, S 2.H, .
L Vr e Rt,t € Tt #t,i=1{0, .., -1},7 =A0, .., -1} :
processes never coincide. Pt Pg
, , , \ ipitse<j-pi+sg+2-He (1-yl) 9)
—f, 00— —fe 1 =fi,— ’
Stq ¥ ! Stq ¥ ! i
N ! N ! Jeprtsg<i-pitse+2 Hp y’y (10)

T T t
DEG . .
ECUoser{ = : - ? (11)
time
)]

ij ij
St ! ' Zit < Yei (12)
K 2 1 I
—fao= 2 < (13

Figure 4: Example of the OSEKtime scheduling with two
processes t1 and tz (periods: 2 - p; = pi,) on a resource
ECUosEKktime. Process ta preempts t1 every second cycle.

ipeA B <jopitsi+2 Heozh +2-He- (L-yph) (14)

Jopitfey <ipetfoit2-He-(1-zh)+2-He-(1-y1) (15)
Vr € R,t€T,,i=1{0,., 20 1}

The constraints are determined as follows: bt
vVteT,: L [I
fi +pi-ofy =s¢ e (3) fos=sete Z Z G (16)
Vit e T, t#£ti={0,., 28 — 1} j={0,., 2 —1}: R
yt €y, #’Z_{w'??i }7]_{7"3 Pr - } t
st < ms 2oy () fot i ofe > £y (1
)) i ft + p: - ofy —s¢ < pt (18)
Jopitsgtep<i-pitse+2-He-y'g (5) The bounds (6) and (7) specify that the start and finish
The bounds (1) and (2) specify that the start and finish times are within the period of the process. On the other

hand, the finish time of each job of a process might be dif-
ferent as expressed in bounds (8) and illustrated in Figure 4
for process t;. Constraints (9) and (10) state that if job ¢

times are within the period of the process. Constraint (3) de-
termines the finish time of each process. In case the process
finishes in the next cycle, the finish time is smaller than the

start time (see process 2 in Figure 3). In this case, the vari- of process ¢ starts before job j of process i, yz’fg becomes 1
able ofy becomes 1 to fulfill constraint (3). The constraints (4) and 0 otherwise. Constraint (11) ensures the consistency of
and (5) ensure that two processes never preempt each other start time order of jobs. Constraint (12) states that a job 4 of
within two hyper-periods (2 - H;). The variable y % is used process t can only be preempted by a job j of process t if the
for switching, i.e., one of the constraints (4) or (5) is trivially latter starts earlier. Constraint (13) prevents mutual preemp-

tion. Constraints (14) and (15) ensure that a job 4 of process

satisfied depending on yi’j~.
tt t finishes after a job j of process t if it is preempted by this

. . other job. Constraint (16) determines the finish time of a job
3.2.2 OSEKtlme S ch.edulmg . . . i of process t based on the preemption of all other jobs. Con-
The OSEKtime operating system is a preemptive operating straint (17) sets the finish time of process t. The finish time

system that uses a LIFO scheduler. All processes are executed

) ; - A fi is the maximum of all job finish times f; ; and is adapted to
depending on a specified offset that lies between 0 and their

the bounds (7) using the binary variable of;. Constraint (18)

period. A process that is executed might be preempted by states that the Worst Case Response Time (WCRT) of a task
another process. In this case, the preempted process is sus- always has to be less than its period.

pended until the process task that was started later finishes

its execution. An example of this scheduling is given in Fig- 3.3 Bus Scheduling (FlexRay)

ure 4. Here, process t2 preempts t1 in the second cycle. To
determine the maximal finish time, the finish times of jobs
have to be considered as illustrated in Figure 4 for process t;.

The formulation for the OSEKtime operating system re-
quires the following variables:

The FlexRay bus is used as a central communication bus
in the proposed architecture. Again, the framework may be
easily extended to support other bus protocols as well. This
bus system enables a synchronization of the ECUs and the
establishment of a fully time-triggered system. For message
scheduling, we assume the static segment of FlexRay is used.

* St ER- stz?,rt tl.rne of process t € T (equals o) In the automotive domain it is common to use the static seg-
e fi € R - finish time of process ¢ € T}, ment for critical data and the dynamic segment for mainte-
o fi; € R - finish time of job ¢ of process t € T}, nance, calibration, and diagnosis which have no constraints
e of; € {0,1} - offset for finish time ¢t € T}, on end-to-end delays. The static segment of the FlexRay is

ij 0.1% - 1if iob i of ¢t €T starts bef organized in ny, static slots with each slot having a duration
* Vi © {0,1} 11 job v of process 1 € 1, starts belore of ef, and available payload of I, in bytes. The static seg-

job j of process t € T} ment is transmitted in the beginning of every FlexRay cycle

667

8A-2

| r {
h ima |
I |1
) Sma (]
ot
k—Smy, — ! k—Sm; — !
[l [l
FlexRay l
2z N - N
. N . N
. N . N
. N . N
. N . N
m m m
Slots @ 72

lmy He—lma— 1

| | | |
lfz 1 f lfz A

Figure 5: An example of a FlexRay scheduling for two mes-
sages m1 and meo that are transmitted in the same slot for
two cycles. The repetition for m; is 1 and for me it is 2.

which has a duration of ps,. FlexRay is available in the ver-
sions 2.1, see [10], and 3.0, see [15], with some differences:
In FlexRay 2.1, the number of cycles is 64 and each slot is
assigned to at most one ECU. In FlexRay 3.0, the number of
cycles is a multiple of 2 with a lower bound of 8 and upper
bound of 64 while a slot might be assigned to different ECUs
for each cycle. Thus, FlexRay 3.0 is more flexible but also
more complex to model.

A message that is transmitted on the FlexRay bus, is de-
fined by the repetition that is deduced from the period, the
execution time that equals the slot duration, and the length
in bytes. An example of a FlexRay scheduling is illustrated
in Figure 5.

The given constants are defined as follows:

® pss - cycle duration of the FlexRay bus
® njs, - number of static slots

e ¢y, - number of cycles (64 for FlexRay 2.1, between 8
and 64 for FlexRay 3.0)

e ey, - duration of a static slot (it holds ny, - efe < pys)
o s, - capacity of one FlexRay static slot in bytes

® p,, - period of message m € Ty,

o, = ;’;'; - repetition of message m € T, with ¢y %rm, =

® e, = ey, - transmission time of message m € T},
e [, - length of a message m € T}, in bytes

For each message, a slot and base cycle has to be deter-
mined. From this value, the assignments of slots to ECUs
is deduced implicitly. Thus, the following values have to be
determined for each message:

e s,b - slot id and base cycle for each message m € T,

The slot and base is encoded in the binary variable [s, b]m.
Independent of the FlexRay version, the following variables
are required:

® sm € R - start time of message m € Ty,
o f,, € R - finish time of message m € T,

o [s,b]m € {0,1} - slot and base cycle pair for each mes-
sage m € T, with s € {1,..,n5,}, b€ {0,..,7 — 1}

These variables are bounded as follows:

VYm € Ty, :
0<Sm <pm —€fs— (Pfa — Nfo - €fa) (19)
efr < fm < pm — (Pfa — Nya - €f2) (20)
These constraints are defined as follows:
VYm € Ty, :
> > [sblm=1 (21)

s€{l,..,np,} b€{0,..,rm —1}

668

Sm =

> >

s€{1l,..,nfy} bE{0,..,rm—1}

((s=1)-efatbpse)-[s,blm (22)

fm = Sm + €fx (23)
e (pm)
Vs e {l,.,ns},b € {0, .., T 1}:
> b [8, D% rmlm < Lo (24)

mETy,

The bounds (19) and (20) constrain the start and finish
times of the transmission of a message/slot. The upper bound
on the start time is defined by the period without the trans-
mission of the last slot and the dynamic segment of FlexRay
which is transmitted after the static segment. The bounds for
the finish time are shifted by the transmission time of a slot
efz. Constraint (21) states that each message is scheduled
in exactly one slot at a specific base cycle. Constraint (22)
determines the start time of a message transmission based on
the slot and base cycle. Constraint (23) defines the finish time
of a message transmission depending on the duration of the
transmission of a static slot. Constraint (24) ensures that the
capacity of a slot is not exceeded.

Depending on the version of the FlexRay protocol, addi-
tional constraints have to be defined that ensure a correct
assignment of slots to ECUs as presented in the following.

3.3.1 FlexRay 2.1 (Slot to ECU assignment)
For FlexRay 2.1, additional variables have to be defined
that specify the assignment of slots to ECUs.

e s € {0,1} - becomes 1 if slot s is assigned to ECU r
and 0 otherwise

These constraints are defined as follows:

Vs € {1, ..,nfx}
d s <1 (25)
TER

VYm € Tm,s € {1,..,nfz},b € {0,..,7m — 1}, 7 = target(m) :
[s,blm < sr (26)

Constraint (25) states that a slot can be assigned to a most
one ECU. Constraint (26) ensures that if a message is sent in
a specific slot, the slot is assigned to the sending ECU.

3.3.2 FlexRay 3.0 (Slot to ECU assignment)

For FlexRay 3.0, additional variables have to defined that
specify the assignment of slots and at specific base cycles to
ECUs.

e [s,b]: € {0,1} - becomes 1 if slot s is assigned to ECU
r in cycle b and 0 otherwise

These constraints are deﬁlned as follows:
cm (pm
Vs e {l,.,ns},b € {0, .., 1}:

meETm
Dfz

Z [s,bl <1

TER

(27)

lem (pm)

VYm € Tpn,s € {1,..,ns2},b € {0,.., 25T

Pra — 1}, r = target(m) :

[s,b%rm|m < [s, b]r (28)

Constraint (27) states that a slot at a specific cycle can be
assigned to a most one ECU. Constraint (28) ensures that if a
message is sent in a specific slot and cycle, the slot is assigned
to the sending ECU at this cycle.

3.4 Timing Constraints

Some functions have strict end-to-end timing constraints.
In this case, it becomes necessary to define constraints that
restrict the latencies of these functions. The functions and
maximal delays are defined as follows:

: delayr 5
ECU otsEK : o : |
rme]
: : :
FlexRay | }*>I-‘m1 |
| | |
1 1 ! |
soven | | %]
1 1 |
)

| D J |
f—wcrttl 4>‘¢Wt1 my I{—Wml ,tz%wcrtwj

AN
wecrt
had my

Figure 6: Illustration of the determination of the end-to-end
delay of a function F' as the sum of all waiting times and Worst
Case Response Times (WCRTSs). Note that process ¢ is pre-
empted by some other process on the resource ECUosEK time-

e F - set of functions that have to fulfill end-to-end timing
constraints

e mazdelayr € R - maximal tolerated delay of a function
FeF

Additionally, ITr determines all paths of a function from the
source processes (sensors) to the sink processes (actuators).
Here, it is assumed that functions do not have cycles. In case
of cycles, the IIr has to be adapted appropriately to break
the cycles.

The end-to-end delay is determined in an additive manner
as follows. Along the paths the delay is determined by the
sum of the execution times of all processes and messages as
well as the waiting time between the data-dependent tasks.
This approach is illustrated in Figure 6.

To constrain the end-to-end delay, the following variables
are required:

e delayr € R - the maximal delay of a function F' € F

e wcrty € R - worst case response time of task t € T

e w; ; € R - waiting time between the finish of ¢t € T" and
start of t € T

e ow,; € {0,1}-0if ¢t € T starts before t € T, 1 otherwise

The bounds on these variables are defined as follows:

VF € F,m € llp, (t,t) € m:
0<weg <pt (29)

VFE]‘—JTEHF:

Zetw < delayr < maxdelayr
i=1

(30)

The constraints are defined as follows:
VF e F,te FNT,:

werty = 4
CT\ K + p¢ - ofy — s,

if t is on FlexRay or eCos,
if ¢t is on OSEKtime.

(31)
VF e F,mellp,t e TI',(t,{) € bEr:
Wy =sg—fi +pi-owgg (32)
VF e F,mellp:
delayg > chrtt + Z Wit (33)
tem (t,t)en
VEecFttc FN(TsVT,):
St = S (34)

The bounds on the waiting time between two data-dependent
tasks is between 0 and the period of the function as stated
in (29). The maximal delay is restricted in the boundary
constraint (30). Constraint (31) determines the Worst Case
Response Time (WCRT) of all tasks. Here, the WCRT of
messages on the FlexRay bus and processes on the eCos op-
erating system are constant. The WCRT of processes on

669

8A-2

function F p | maxdelayr | [Tp] | [Tm]
legacy0 * 5 - 8 3
legacyl * 5 - 8 5
legacy2 * 5 - 8 5
legacy3 * 40 10 4 3
DC Motor 80 20 4 3
cruise control | 20 10 5 3
car suspension | 10 5 6 4
airbag system | 5 3 5 3

Table 1: The used case study: Overall eight functions have to
be scheduled. Given is the period p, maximal end-to-end de-
lay mazdelayr, the number of processes |1p|, and the number
of messages |Ti,| for each function.

ECUs with the OSEKtime operating system are determined
by the difference between the latest relative finish time and
the start time. Constraint (32) determines the waiting time
between two data-dependent tasks (two neighboring tasks
along a path). The binary variable ow, ; ensures that the
waiting time is always within the predefined bounds, i.e., not
negative. Constraint (33) determines the end-to-end delay
of a function. The end-to-end delay is defined as the maxi-
mal latency along all paths of a function. Constraint (34) is
optional and necessary for control functions where the start
time of sensor tasks (7s) and actuator tasks (73), respectively,
have to be identical.

4. EXPERIMENTAL RESULTS

In this section, we present our experimental results using an
automotive subsystem as a case study consisting of multiple
control functions. Finally, a scalability analysis is carried out
using synthetic test cases. For all experiments, the CPLEX
ILP solver [9] is used. All experiments were carried out on an
Intel Core i5 2.53 GHz with 4 GB RAM.

4.1 Case Study

We consider a FlexRay subsystem consisting of six ECUs.
Three of the ECUs used the eCos-based non-preemptive oper-
ating systems, the other three used OSEKtime. The FlexRay
bus was configured to have a cycle duration of 5ms with 60
static slots in the static segment. The payload of a slot was 40
bytes and the duration of a slot was 0.065ms. FlexRay 3.0 was
used. Overall eight functions consisting of 48 processes and
29 messages are executed in this system. A detailed overview
of these functions is given in Table 1.

Three of the functions in Table 1 are common automotive
control functions: a DC motor speed control, a cruise control
system and a car suspension system. Additionally, an airbag
system with a high sampling rate of 5ms and a very low max-
imal end-to-end latency was used. The legacy functions are
assumed to be already scheduled.

Control Functions: The maxdelayr of all control func-
tions, see Table 1, was determined by an investigation the
control model and its dynamics. Each control function was
sampled with a constant period (sampling interval) p. The
overall feedback control model was a discrete-time sampled-
data system where the feedback signals experience a constant
delay. The following feedback control model was considered,

i(k 4 1) = Az(k) + Bo(r)u(k) + Bi(t)u(k — 1), (35)

where k indicates k*" sampling instant, i.e., p - k time units,
z(k) € R", R™ are the states of the system, u(k) is the input
to the system, A € R™*™, Bo1(1) € R™™! are the system
and input matrices, respectively. The system states z(k) are
measured by n processes in T,. Additionally, another two
tasks are responsible for computation of control algorithm
u(k) and actuation. Hence, for a control application of di-
mension n it holds |7p| = n + 2 and |T)»| < n + 1 since com-
municating processes on the same ECU do not require mes-
sages. The periods of all processes and messages of a function
are equal. 7 is the constant feedback delay and 7 = delayr.

8A-2

delayr
function F maxdelayr | feas opt
DC Motor 20 9.175 | 2.275
cruise control 10 8.195 | 3.5
car suspension 5 2.775 | 1.48
airbag system 3 2.885 | 1.58

Table 2: Results for the case study: feas shows the end-to-
end delays when a solution is obtained that satisfies all con-
straints, opt shows the optimized delays when the objective
function from Eq. (36) is used.

For 7 > maxdelayr, the resulting dynamics (35) fails to meet
stability requirement of the control functions.

Results: The first four functions (marked with * in Table 1)
were already mapped to the system and the schedule had to
be extended incrementally for mapping the other four func-
tions. The proposed methodology is capable of extending a
schedule incrementally by setting the start times of the tasks
in the ILP. The resulting ILP formulation consists of 23437
variables and 60092 constraints.

The time required to find a feasible schedule was 2.91 sec-
onds. This is a very reasonable runtime and provides a solu-
tion to the designer almost instantaneously. The results are
given in Table 2 in the column feas. The resulting solution
is tested for plausibility and successfully synthesized using
SIMTOOLS and a model-based design flow, see [14].
Optimization Objective: Using an ILP also allows to de-
fine a linear objective function. In general, arbitrary linear
objective functions might be applied such as minimizing the
used FlexRay slots. The consideration of different objective
functions is not in the scope of this paper and hence as an
example, a minimization of the sum of the end-to-end delays
of the considered functions is used:

min : Z delayr
FeF

(36)

The runtime of this approach is 542 seconds with the result-
ing end-to-end delays as given in the Table 2 in the column
opt. To reduce this runtime, the user might use an incre-
mental design as is common in the automotive domain, i.e.,
scheduling some of the functions sequentially.

4.2 Scalability

Finally, experiments were carried out to show the scalabil-
ity of the proposed approach. For this purpose, synthetic ap-
plications with 1 to 16 functions were generated and mapped
onto a set of ECUs. The number of ECUs were determined as
LIT|/25] + 3 (at least three ECUs and for each 25 tasks one
additional ECU). The execution time for each process was
between 0.1ms and 2.0ms while the periods of the functions
were either 5ms, 10ms, or 20ms. For each application size, 40
different applications were generated to obtain a significant
mean value.

The results of the scalability analysis are illustrated in Fig-
ure 7. The results show that scheduling up to 100 processes
and messages at the same time is possible in a reasonable
amount of time. In practice, this value is enough for the au-
tomotive domain since usually an incremental design is car-
ried out. The results of the scalability analysis ensure that
even a much higher number of processes and messages can be
scheduled with the proposed approach than in the presented
case study.

5. CONCLUDING REMARKS

This paper proposed a framework for scheduling time-trig-
gered automotive systems. Using a modular ILP formula-
tion, both, different bus access schemes and operating sys-
tem schedules were compositionally modeled. In particu-
lar, FlexRay 2.1 and 3.0, as well as non-preemptive eCos-
based and the OSEKtime operating systems were modeled.
The proposed framework has several advantages compared to
known approaches — the modeling of each component is done

670

300 T
© 200 N
(<]
£
g -
=

100) 1

. g
0 20 40 60 80 100
size |T'|

Figure 7: Results of the scalability analysis: Number of pro-
cesses and messages (|T'| = |Tp|+|Tm|) vs. runtime in seconds.
The vertical error bars show the deviation.

separately, an incremental scheduling of legacy systems is pos-
sible, and there are no restrictions on the maximal end-to-end
delays or spanning of the application over the communica-
tion cycle. A case study gave evidence of the effectiveness of
the proposed approach. The scalability of the proposed ap-
proach was also studied on a set of synthetic test cases. It was
shown that the approach is applicable to large instances and
might be used in an incremental manner for an entire system,
thereby enabling an efficient design of fully time-triggered au-
tomotive systems.

6. REFERENCES

[1] AUTOSAR. Specification of the FlexRay Interface Version 3.0.2,
2008. http://www.autosar.org.

[2] G. Dantzig. Linear Programming and Extensions. Princeton

University Press, 1998.

[3] S. Ding, N. Murakami, H. Tomiyama, and H. Takada. A

GA-based Scheduling Method for FlexRay Systems. In Proc. of

EMSOFT 2005, pages 110-113, 2005.

eCos. embedded Configurable operating system.

http://ecos.sourceware.org/.

FlexRay Consortium. FlexRay Communications Systems -

Protocol Specification. http://www.flexray.com.

M. Grenier, L. Havet, and N. Navet. Configuring the

Communication on FlexRay: The Case of the Static Segment. In

Proc. of ERTS 2008, 2008.

E. Guran Schmidt and K. Schmidt. Message Scheduling for the

FlexRay Protocol: The Dynamic Segment. IEEE Transactions

on Vehicular Technology, 58(5):2160-2169, 2009.

A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath,

P. V. V. Ganesan, and S. Ramesh. Performance Analysis of

FlexRay-based ECU Networks. In Proc. of DAC 2007, pages

284-289, 2007.

IBM. ILOG CPLEX. http://www.ibm.com/software/, Version

12.2.

M. Lukasiewycz, M. Gla8, P. Milbredt, and J. Teich. FlexRay

Schedule Optimization of the Static Segment. In Proc. of

CODES+ISSS 2009, pages 363-372, 2009.

OSEK/VDX. Time Triggered Operating System.

http://www.osek-vdx.org/.

T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing

Analysis of the FlexRay Communication Protocol. Real-Time

Systems, 39(1):205-235, 2008.

K. Schmidt and E. Guran Schmidt. Message Scheduling for the

FlexRay Protocol: The Static Segment. IEEE Transactions on

Vehicular Technology, 58(5):2170-2179, 2009.

SIMTOOLS. Model-Based Design Tools for FlexRay-based

Applications. http://www.simtools.at/.

P. Spindler. Automotive Networking Protocol Overview, 2010.

Freescale Semiconductor presentation.

H. Zeng, M. Di Natale, A. Ghosal, and

A. Sangiovanni-Vincentelli. Schedule Optimization of

Time-Triggered Systems Communicating Over the FlexRay

Static Segment. IEEE Transactions on Industrial Informatics,

7(1):1-17, 2011.

H. Zeng, W. Zhengzheng, M. Di Natale, A. Ghosal, P. Giusto,

and A. Sangiovanni-Vincentelli. Scheduling the flexray bus using

optimization techniques. In Proc. of DAC 2009, pages 874-877,

2009.

(4]
(5]
(6]

(7]

(8]

[9

(10]

(11]

(12]

(13]

[14]
[15]

[16]

(17]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

