System Architecture and Software Design
for Electric Vehicles

Martin Lukasiewycz, Sebastian Steinhorst, Sidharta Andalam, Florian Sagstetter,
Peter Waszecki, Wanli Chang, Matthias Kauer, Philipp Mundhenk
TUM CREATE, Singapore

martin.lukasiewycz@tum-create.edu.sg

Shreejith Shanker, Suhaib A. Fahmy
Nanyang Technological University, Singapore

sfahmy@ntu.edu.sg

ABSTRACT

This paper gives an overview of the system architecture and
software design challenges for Electric Vehicles (EVs). First,
we introduce the EV-specific components and their control,
considering the battery, electric motor, and electric pow-
ertrain. Moreover, technologies that will help to advance
safety and energy efficiency of EVs such as drive-by-wire and
information systems are discussed. Regarding the system
architecture, we present challenges in the domain of com-
munication and computation platforms. A paradigm shift
towards time-triggered in-vehicle communication systems
becomes inevitable for the sake of determinism, making the
introduction of new bus systems and protocols necessary. At
the same time, novel computational devices promise high
processing power at low cost which will make a reduction in
the number of Electronic Control Units (ECUs) possible. As
a result, the software design has to be performed in a holistic
manner, considering the controlled component while trans-
parently abstracting the underlying hardware architecture.
For this purpose, we show how middleware and verification
techniques can help to reduce the design and test complexity.
At the same time, with the growing connectivity of EVs,
security has to become a major design objective, considering
possible threats and a security-aware design as discussed in
this paper.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General—Sys-
tem architectures

General Terms
Design

Keywords
Electric Vehicle, Software Design, System Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC ’13, May 29-June 7 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Samarijit Chakraborty
TU Munich, Germany

samarjit@tum.de

central
gateway

|

\
safety chassis
(CAN) (FlexRay)

in fotainment
(MOST)

sub — network comfort
(LIN) (CAN)

Figure 1: Illustration of a typical in-vehicle network
architecture of a modern automobile. Various ECUs
(J) are interconnected via different buses. Gate-
ways (=) are used to interconnect the buses.

1. INTRODUCTION

EVs are widely accepted as emerging and sustainable so-
lution to environmental and transportation challenges in
growing mega-cities. In contrast to Internal Combustion En-
gine (ICE) cars, EVs comprise several components like the
battery, electric motor, or powertrain that bring along new
implementation, integration, and control challenges. More-
over, the implementation of drive-by-wire control and novel
information systems may increase the safety and energy effi-
ciency of EVs significantly. While these new components and
systems bring along several fundamental challenges, EVs at
the same time may serve as a platform to drive a paradigm
change in the system architecture and software design for
road vehicles.

Current top-of-the-range vehicles use embedded system
architectures that consist of up to 100 ECUs with several
heterogeneous buses that are interconnected by one or more
gateways as illustrated in Figure 1. This complex network is
a result of an incremental design over the last decades where
new functionality is often introduced by adding separate hard-
ware devices. The reasons for this federated approach can be
found in the structure of the automotive industry where the
car manufacturers obtain new functions from several different
and competing suppliers.

This publication is made possible by the Singapore National Re-
search Foundation under its Campus for Research Excellence And
Technological Enterprise (CREATE) programme.

While the federated approach has been feasible in the
recent years, it is reaching its limits with the growing com-
plexity of in-vehicle networks and the lack of installation
space, particularly in EVs. With a growing computational
power of novel processing units, the major trend goes towards
a consolidation of ECUs and a unification of the in-vehicle
network. This integrated approach will require an entirely
different design methodology where functionality has to be
developed for a shared underlying architecture.

In this paper, we give an overview of the challenges and
present first results in the system architecture and software
design for EVs. Section 2 gives an introduction to EV compo-
nents, including the battery, electric motor, and powertrain.
In Section 3, the trends in communication and computation
devices are presented. The software design challenges, com-
prising the control design as well as the upcoming security in
vehicles, are presented in Section 4. Finally, Section 5 makes
concluding remarks.

2. ELECTRIC VEHICLE COMPONENTS

In the following, the essential components of EVs such

as the battery, electric motor, and electric powertrain are
introduced. Moreover, drive-by-wire and information systems
are discussed. While it is to some extent possible to convert
an ICE vehicle to an EV by replacing the powertrain, a
tailored design is considered as more sustainable. Due to the
shorter driving ranges and their emission-free operation, it is
projected that EVs will play a major role in growing mega-
cities. As a result, a design of the vehicle and its components
has to take this scenario into account.
Battery Pack. In EVs, the battery pack is currently the
most essential and expensive component while it is also a
major bottleneck restricting the driving range of the vehicle.
These Electrical Energy Storages (EESs) require both high
energy and power density to optimize the utilization of al-
located weight and volume of the battery. In this context,
Lithium-Ton (Li-Ion) batteries are widely considered to dom-
inate other battery chemistries [1]. However, Li-Ion batteries
are sensitive to their operating parameters and exceeding
specified bounds such as overcharging or undercharging cells
negatively impacts the reliability by causing damage to the
battery. In the worst case, this damage leads to a thermal
runaway resulting in fire or explosion that poses a serious
safety issue.

Therefore, sophisticated Battery Management Systems
(BMSs) are applied to maintain the battery in a safe and
healthy operating state. Figure 2 illustrates a state-of-the-art
BMS architecture in a hierarchical approach. This incorpo-
rates monitoring the State of Charge (SoC) of battery cells
by measuring voltage levels and the current drawn from the
cells, as well as the temperature of cells.

As series-connected battery cells charge and discharge
unevenly, Cell Balancing (CB) is required to maintain an
equalized overall SoC for the battery. This equalization is
achieved by either passive or active CB. Passive approaches
that are state-of-the-art discharge cells with a higher SoC
over a resistor to the charge level of the cell with the lowest
SoC. In contrast, active approaches transfer charges between
cells to avoid the waste of energy, increasing the driving range
as well as the lifetime of the battery. A recent advancement
in the area of active cell balancing system design is presented
in [2].

Electric Motor. Synchronous motors are commonly used in
EVs due to their high efficiency and light weight [4]. As shown
in Figure 3, the motor is driven by sinusoidal waveforms that
are controlled by the inverter. The inverter is using six

| external bus

battery
management
] private bus
| | | | |
module module module
manage | | manage- | .| monages | \SERG | Swateh
HHHHH$+-HHHE- 4HHHHF%M(T
module module module n

Figure 2: Illustration of the Battery Management
System (BMS) consisting of a hierarchical architec-
ture with battery cell modules controlled by module
management devices, see [3].

IGBT inverter

Tl

PMSM e-motor

Ve
5] Sj{% st%
O
’ Vab - - - VUbc Vca
)) '/// IR
N - .
§ AN //) \\ t
> N Vi N v
Q N , \\v‘.
S N > RN

Figure 3: Illustration of the control of a Permanent
Magnet Synchronous Motor (PMSM) using an in-
verter consisting of six Insulated Gate Bipolar Tran-
sistors (IGBTS) sq,3Sa, Sb, 56, Sc,Sc. The IGBTSs are
controlled such that the three voltages are sinusoidal
waveforms that are phase-shifted by %TI‘.

Insulated Gate Bipolar Transistors (IGBTs) to convert the
DC source from the battery pack to AC current with the
desired frequency and magnitude to drive the motor. For
this purpose, the IGBTs work as electronic switches that are
controlled by Pulse Width Modulation (PWM) signals using
the space-vector modulation technique [5]. Here, proper
switching sequences for all six IGBTs guarantee that the
output is the desired three-phase alternating current with
specific phase shifts.

The efficient and reliable control of electric motors in EVs
can become a challenging task. For instance, due to harsh op-
erating environments like high voltages, switching frequency,
and changing temperatures, IGBTs might fail. One or more
faults in the IGBT package make the output current no
longer sinusoidal which drives the motor into unpredicted

battery inverter e-motor
AC
1t b
DC B
12V
DC[—
converter

Figure 4: Illustration of a basic electric powertrain
of a full electric vehicle.

operating modes and thus may jeopardize passenger lives.
Therefore, a fault-tolerant control strategy is desirable to
ensure normal operation of the motor under one fault or a
combination of different faults. The solution should be opti-
mized to require minimal redundant hardware while covering
a high amount of faulty situations. The controller needs to
calculate post-fault PWM sequences and react in real-time,
requiring efficient algorithms to ensure that the motor re-
turns to the best possible operation quickly enough such that
safety requirements of the vehicle are not compromised.
Electric Powertrain. The electric powertrain is a distinc-
tive feature of EVs. It is understood that the transition
from ICE cars to EVs cannot be accomplished by simply
replacing the ICE with an electric motor and the fuel tank
with a battery. As illustrated in Figure 4, an architecture for
the powertrain of an EV has to be developed for the motor,
battery, converters, and inverters which needs a sophisticated
control to operate in an effective and efficient way. Energy
flow control is of particular importance in this context [6].
This incorporates the management of the energy storage as
well as the energy consumers and providers.

As both the electric motor and the battery can operate

as energy sources and consumers, depending on the driving
state such as acceleration or regenerative braking, the control
and the timing of energy flows are crucial design tasks that
significantly affect the energy efficiency of the overall system.
To increase the efficiency, a distributed real-time control
becomes inevitable. Moreover, a conversion between different
voltage levels may be required in the powertrain. Therefore,
an optimization of the different conversion levels using DC-
DC converters is equally important for the energy efficiency
of the architecture.
Information Systems. One major challenge in EVs is the
limited driving range due to the relatively small battery ca-
pacity. To cope with this drawback, an information system
becomes necessary that ensures that driving ranges are never
exceeded. At the same time, it is projected that informa-
tion systems will be tightly coupled with next-generation
entertainment systems.

Information systems in EVs need to be more sustainable
than systems using fixed mounted screens that require a
high amount of maintenance and are outdated within a short
period of time in comparison to the fast progress in consumer
electronics [7]. One way to achieve this goal is by establishing
a native connection between the user devices such as smart-
phones or tablets and the vehicle. These user devices might
interface the vehicle to access information, entertainment,
and control related functionality. Implementations of this

approach might consist of one central server component in
the vehicle, offering wireless open access for user devices. Via
the central vehicle server, the devices can be integrated with
Vehicle-to-Vehicle (V2V) and Vehicle-to-Grid (V2G) infras-
tructures that are particularly important for EVs. Providing
information on available charging stations to drivers can be
further qualified by taking into account the locations, energy-
consumption and destinations of all vehicles, as well as the
number and location of charging stations. On the other hand,
such an open system brings along several challenges in the
domain of security that have to be addressed appropriately
to guarantee that safety-critical applications are under no
circumstances compromised.

Drive-by-wire. While drive-by-wire is a technology emerg-
ing also for ICE cars, it is of particular importance for EVs.
In EVs, the acceleration is already not performed mechani-
cally and as current battery technology only allows a limited
range, energy recuperation during braking is essential to
extend the driving range [8]. The energy savings using this
mechanism as well as using prudent acceleration could be op-
timized via sophisticated and supportive control, enhancing
the desired driver inputs. Therefore, a mechanical decoupling
between the braking pedal and the brakes becomes necessary
as provided by a brake-by-wire implementation [9]. Besides
that, EVs are more straightforward to actuate by electronics
than ICE cars.

However, since drive-by-wire is highly safety-critical, it
needs to be designed in a fault-tolerant fashion, introducing
a certain amount of redundancy in the control system. With
most software errors being of systematic nature, straightfor-
ward component duplication may not be sufficient to reduce
the associated risk to a sufficiently small level [10]. Functions
may have to be implemented by different programmers or at
least run on non-identical hardware. Additional care needs
to be taken to fail-proof actuating and sensing devices. As a
result, the introduction of this technology in the automotive
industry where cost sensitivity prevails is facing certain ob-
stacles. In recent years, the advent of more sensing devices
and cheaper as well as more efficient ECUs have sparked the
interest again in the context of EVs.

3. SYSTEM ARCHITECTURE

In the following, challenges and trends in the system ar-
chitecture in EVs are presented. We give an overview of the
in-vehicle communication as well as next-generation compu-
tational devices in EVs. A major trend goes towards the
consolidation of ECUs, relying on a homogeneous network.
This will require significantly more powerful computational
devices as well as deterministic bus systems with a high
bandwidth. In the automotive domain, this would require a
paradigm change where EVs might serve as a platform for
an entire redesign of the system architecture. This transition
from federated systems with one function per single-core
ECU to integrated systems, comprising several applications
on one powerful ECU can impede the growing complexity
of automotive architectures by reducing the overall number
of controllers and thus increase the flexibility and reliabil-
ity [11].

3.1 Communication

Protocols. Automotive architectures today make use of
many different heterogeneous bus systems such as Controller
Area Network (CAN), Local Interconnect Network (LIN),
FlexRay, and Media Oriented Systems Transport (MOST),
see Figure 1. As a result of the complexity of this in-vehicle
network, integration and configuration became time and

cost intensive tasks that may even prohibit distributed func-
tions that rely on predictable communication with high
bandwidths. Therefore, one of the key challenges for next-
generation architectures is the design of a unified in-vehicle
network that allows to integrate and configure components
and subnetworks transparently and independently of each
other. The basis for such architectures are deterministic com-
munication protocols. One suitable solution introduced in re-
cent years is FlexRay which is based on a hybrid protocol sup-
porting both time-triggered and event-triggered communica-
tion with a bandwidth of 10MBit/s [12]. For next-generation
vehicles and particularly EVs, Ethernet with a bandwidth
of 100MBit/s and more may become the first choice as a
cost-efficient and light-weight implementation, using a physi-
cal layer implementation that allows twisted-unshielded pair
cables [13]. As standard Ethernet is non-deterministic and
therefore unsuitable for time-critical applications, extensions
to support stringent real-time requirements become necessary.
In this context, the Audio/Video Bridging (AVB) protocol
is currently used in the automotive industry [14] for the
implementation of entertainment systems, relying on a syn-
chronization with Precision Time Protocol (PTP) [15] which
might also serve as basis for other time-triggered Ethernet
protocols.

Besides the communication between the components in the
in-vehicle network, EVs also benefit from V2G and to some
extend V2V communication. For this purpose, protocols like
Bluetooth or IEEE 802.11 (WiFi) may become a common
feature in the communication infrastructure. In this context,
Service Oriented Architectures (SOAs) have to be employed
to enable a provision of information and control services [16].
Time-triggered Scheduling. EVs implement many func-
tions that require a deterministic communication such as
battery management, electric motor control, and upcoming
drive-by-wire implementations. Additional safety-critical
functions will even increase the need for real-time commu-
nication with very strict end-to-end timing, such that time-
triggered protocols will further gain importance. As schedules
are defined at design time, time-triggered protocols ensure
predictability and provide a deterministic communication. In
particular, the time-synchronization between ECUs allows to
obtain a global schedule, considering all tasks and messages.

While synchronous time-triggered scheduling allows to sig-
nificantly reduce the end-to-end timing delays of applications,
obtaining schedules for all tasks and messages concurrently is
highly complex and existing approaches only provide limited
scalability [17]. A remedy might be an integration approach
where the configuration for each component or subsystem
might be defined independently and integrated into a global
schedule in the integration phase [18]. This methodology is
also in accordance with the design approach in the automo-
tive industry where individual components are designed and
tested with a valid configuration before being integrated in
a later stage.

3.2 Computation

Multi-core. The ever growing demand for innovation and
new functionality in modern cars necessitates a paradigm
shift in automotive system architectures in terms of hardware
and software. In particular, the introduction of drive-by-wire
applications and high-performance BMSs for EVs as well as
new information systems clearly redefines the requirements
of current hardware platforms in terms of computation, com-
munication, and overall topology. This change, in turn, calls
for the implementation of multi-core ECUs for which three
main reasons can be pointed out. First of all, gaining higher

computational performance without increasing the power
consumption and heat dissipation can only be achieved by
adding new cores rather than increasing clock frequencies of
single-core processors [19]. Moreover, the enhanced perfor-
mance per watt ratio supports the strict energy requirements
in EVs and the higher level of parallelism provided by multi-
core systems allows for the compliance with automotive safety
standards like ISO 26262 [20]. Finally, a major advantage
is that software from single-core ECUs can be ported to
multi-core ECUs more easily than to architectural different
computational platforms, like FPGAs.

Besides a reliable high-performance hardware, safety-critical
applications as used for next-generation driver assistance sys-
tems would strongly benefit from real-time capable multi-core
Operating Systems (OSs). By providing comprehensive soft-
ware partitioning and resource sharing mechanisms an OS
can guarantee the desired functionality. The challenge is to
design a specialized multi-core OS which provides not only
hard real-time guarantees for safety-critical tasks but also
mechanisms for segregating trusted and non-trusted code
and strategies for intelligent cache utilization. Furthermore,
to ensure a fully predictable real-time behavior for both
the multi-core ECU and the corresponding communication
within the system architecture, only time-triggered execution
models come into consideration. Although current multi-
core OSs, like PharOS [21] or Barrelfish [22], are not able to
fulfill the aforementioned requirements, they can highlight
general design trends for the development of a reliable and
deterministic multi-core OSs for system architectures of EVs.
GPU. Modern vehicles comprise a significant amount of
image and sensor processing to increase the safety of all road
users. In this context, there are specific challenges for EVs
which for instance have almost soundless engines, making
them extremely dangerous in situations where pedestrians
come into close proximity with the vehicle. A remedy might
be a radar or camera-based pedestrian recognition that is
coupled with a warning system that generates audible alerts
to pedestrians.

One possible implementation of the warning system can
be achieved using cameras and image processing techniques.
Cameras capture a snapshot of the environment and then
the image is processed in real-time to detect any pedestri-
ans. This image processing demands a lot of computational
resources which can be provided by Graphical Processing
Units (GPUs) [23]. When compared to a CPU, due to more
hardware-level parallelism, a GPU is significantly faster at
processing an image [23]. Thus, GPUs would make a good
choice for implementing safety-critical functions that require
a high amount of parallel processing.

GPU programming frameworks such as OpenCL and CUDA

are generally used for programming GPUs [24]. However,
due to the inherent parallelism, programming a GPU is much
more complicated than programming a CPU. The program-
mer must be aware of the underlying hardware architecture
and structure the program carefully to avoid multiple threads
accessing the same memory locations at the same time, re-
sulting in either inconsistent data or deadlock during memory
access.
FPGA. Field Programmable Gate Arrays (FPGAs) have
found favor in a number of application domains as a platform
for accelerating complex algorithms. They offer the benefits
of a custom hardware implementation at a fraction of the
fixed cost of designing a custom Integrated Circuit (IC).
Hence, they find use in medium-volume markets or those
where evolving standards may require regular changes to the
hardware.

While FPGAs are currently not often used in the automo-
tive domain, they bring along several advantages for EVs.
For computationally intensive tasks, within an embedded
systems power budget, FPGAs are often the only sensible
choice. Furthermore, since computation is implemented spa-
tially, it is possible to completely isolate distinct tasks while
maintaining their individual determinism. This could help
to reduce the number of ECUs and at the same time guaran-
tee the isolation between various safety-critical applications.
Note that Application-Specific Integrated Circuits (ASICs)
are cheaper and even more energy-efficient, but they might
not provide the necessary flexibility that is required in case
many functions are implemented on one ECUs.

An additional capability that is unique to FPGAs is that,
as volatile devices, they can be reconfigured. This has so far
primarily been used to allow for design iteration, or incor-
poration of improvements in subsequent revisions. However,
this capability can also be leveraged at runtime, in the form
of dynamic reconfiguration, allowing different applications
to be implemented at different times. All these capabili-
ties make the incorporation of FPGAs in EVs a promising
prospect [25].

Advanced techniques like Partial Reconfiguration (PR)
extend the capabilities of FPGAs for use in safety-critical
applications. PR allows us to define fault-tolerant embedded
computing units that can recover from faults by selectively
reconfiguring the faulty module alone, while a redundant
mode with lower specifications takes over control during the
recovery process [26].

4. SOFTWARE DESIGN

A consolidated system architecture will require an entirely
different function and software design approach in EVs. A
central component of this software design approach might
be a middleware that enables a more flexible development
and operation. In the following, we discuss challenges and
approaches in the area of software design for EVs. First, we
present techniques to enable an efficient implementation of
control functions using several different techniques. Finally,
the issue of security in an increasingly connected vehicle is
discussed.

4.1 Control

Middleware Approach. Current premium-cars already
require millions lines of code [27] and it is projected that
EVs will further increase the amount of software in vehicles.
A major reason is the requirement to create additional sources
of revenue for car manufacturers to cope with the high costs
of batteries as well as the loss of the profitable service of
the ICE. Such a source of revenue for EVs could be made
possible by allowing additional purchasing of functionalities
while the vehicle is already in operation. In turn, this will
require a significantly more flexible system and software
design to cope with the growing complexity of distributed
control.

For the sake of higher flexibility and shorter time-to-market,
a lean middleware approach is a potential solution. This
middleware may abstract the underlying hardware and oper-
ating systems and enable a unified platform for the design
of software while providing support for virtualization such
that various tasks can be executed in parallel on the same
hardware in an isolated fashion. As a result, software tasks
may be distributed in a more flexible way, supporting the
desired reduction of ECUs.

While flexibility is a major goal in software design for vehi-
cles, the determinism of functions and the entire system has

to be ensured. This might be achieved by incorporating the
mentioned time-triggered mechanisms into the middleware
as well as verification techniques.

Verification of distributed control systems. Many com-
ponents in EVs require a precise and responsive control. Bat-
tery packs and upcoming drive-by-wire applications have a
spatially distributed control where sensors, controllers, and
actuators cannot be implemented on a single device or ECU,
respectively. This leads to significant communication de-
lays in the control loops that further complicate the correct
design of the control functions. As a remedy, verification
approaches might be used to formally guarantee the cor-
rect functionality of safety-critical control functions. This
approach represents a significant improvement in current
design flows where, although controller models are formally
verified, their implementation on a distributed architecture
is validated in an ad-hoc fashion with extensive testing and
integration efforts.

The classic control-theoretic approach relies on idealized

assumptions. Typically, computation and even communica-
tion are assumed to function perfectly and without delay.
This is to a certain extent reasonable for single ECU systems
where no communication takes place. Recently, verification
techniques have been applied to tackle this problem. In [28],
it was shown that an w-regular language can be used as inter-
face between the performance requirements for the control
system and the transmission timings on a communication net-
work. It is more expressive than an interface that only relies
on combinations of periods and deadlines. In [29], this model
is further extended such that an automaton framework for
streaming systems is adapted to describe the transmission of
control messages. It is then verified that the communication
remains within the allowed patterns using model checking.
In turn, this guarantees the initial performance requirement.
A major challenge of these verification approaches that are
very versatile remains the scalability.
Precise Timing Analysis. Safety-critical systems require
guarantees on the functionality as well as the timing char-
acteristics of programs. This requires modelling timing be-
haviour of micro-architectural features such as memory hi-
erarchies, pipelines and buses to compute the Worst Case
Execution Time (WCET) of a program. The ability to com-
pute precise timing analysis is important and is dependent
on the architectural features. For example, caches with re-
placement policies like LRU provide the best predictability,
while PLRU and FIFO are much harder to analyse [30].

Static analysis of caches with various allocation and re-
placement algorithms have been studied in great detail [30,
31]. In general, there is a trade-off between the precision
(tightness of the estimate) and the scalability (analysis time).
For example, [31] captures the precise behavior of caches.
However, this technique does not scale for large programs.
In contrast, the approach in [30] avoids the state-explosion
using an abstraction that scales for very large programs at
the expense of reduced precision.

An alternative to caches are ScratchPad Memories (SPMs)
that are fully software controlled caches. In SPMs, the alloca-
tion and replacement decisions are made in software, guided
by compile time decisions. Recent work on SPMs focuses on
developing software allocation algorithms and/or designing
tailored architectures with SPMs [32]. SPMs are allocated
statically and are easier to analyze, but they provide compar-
atively lower average and sometimes worst case performance
when compared to caches. However, for successful implemen-
tation of safety-critical systems, it is important to emphasize
on predictability rather than performance. Thus, SPMs are

an ideal design choice for implementations of safety-critical
systems.

4.2 Security

Threats. A recent analysis of automotive architectures has
shown that current series vehicles are often insufficiently
protected against attacks aiming to temper the system. For
instance, researchers were able to gain access to the in-vehicle
network via Bluetooth and implemented a virus [33, 34].
While EVs have many security vulnerabilities in common
with ICE vehicles, additional security threats are arising:
Latest generation charging plugs implement a communication
protocol to allow information exchange between the BMS
and the charging station, e.g., for billing or for future V2G
applications. This might allow man-in-the-middle attacks
where the attacker attaches a connector between the charging
plug of the car and the charging station. For a more detailed
discussion of the security threats for electric vehicles see [35].
Security-aware Design. Due to a significantly higher con-
nectivity of EVs, security has to become a major design
objective for automotive architectures. Besides protecting
potential access points, the charging plug or V2G commu-
nication interfaces with authentication approaches such as
challenge response [36], additional security measures for the
in-vehicle network become necessary. For instance, a secure
in-vehicle communication is required that encrypts messages
transmitted between ECUs, including an authentication of
the sender. While existing buses like CAN are unsuitable
for a secure communication due to the limited message size,
upcoming protocols in the automotive domains such as Eth-
ernet with IPSec [37] offer an established security solution.
Additionally, as security leaks are commonly introduced by
careless integration of secure components, a holistic design ap-
proach is essential to obtain a secure automotive architecture.
The basis for such an architecture might be the discussed
middleware which allows isolating the components and soft-
ware functions from each other such that one compromised
component does not affect the whole system.

S. CONCLUDING REMARKS

Already today, a vast majority of innovations in vehicles
is driven by electronics and software. However, the current
architectures grew incrementally over the past decades and
the integration approach to implement new functions by
adding new hardware devices is reaching its limits. Here,
EVs may serve as a platform to implement a consolidated
hardware architecture using middleware approaches to dras-
tically simplify the integration, providing a solution to cope
with the growing pressure to innovate in the automotive in-
dustry. At the same time, there exist several challenges such
as the limited driving range of EVs that need to be addressed
and solved properly in order not to become obstacles in this
potential paradigm change in the automotive industry.

q 1\/] Er E et aN]g';,ttenes and battery management systems

] for electric vehicles. In Proc. of DATE, pages 971 —976, 2012.

[2] M. Kauer, S. Narayanaswami, S. Steinhorst, M. Lukasiewycz,
S. Chakraborty, and L. Hedrich. Modular system-level
architecture for concurrent cell balancing. In Proc. of DAC
2018, 2013.

[3] M. Brandl et al. Batteries and battery management systems
for electric vehicles. In Proc. of DATE, pages 971 —976, 2012.

[4] I. Boldea. Control issues in adjustable speed drives. IEEE
Industrial Electronics Magazine, 2(3):32-50, Sep 2008.

[5] K. Zhou and D. Wang. Relationship between space-vector
modulation and three-phase carrier-based PWM: A
comprehensive analysis. IEEE Transactions on Industrial
Electronics, 49(1):186-196, Feb 2002.

[6] H. Yoo, S. Sul, Y. Park, and J. Jeong. System integration and

power-flow management for a series hybrid electric vehicle

(7]
(8]

(9]

(10]

(11]

(12]

(13]
(14]

(18]
(16]

(17]

(18]

[19]

(20]

(21]

[22]

[23]
[24]
[25]
[26]

(27]
(28]

[29]

(30]
(31]
(32]

(33]

[34]

(35]

(36]

(37]

using supercapacitors and batteries. IEEE Transactions on
Industry Applications, 44(1):108 —114, 2008.

A. Schmidt, A.K. Dey, A. L. Kun, and W. Spiessl. Automotive
user interfaces: human computer interaction in the car. In Ext.
Abstracts CHI, pages 3177-3180, 2010.

C. C. Chan. The state of the art of electric, hybrid, and fuel
cell vehicles. Proceedings of the IEEE, 95(4):704-718, 2007.
E.a. Bretz. By-wire cars turn the corner. IEEE Spectrum,
38(4):68-73, 2001.

R. Isermann, R. Schwarz, and S. Stolzl. Fault-tolerant
drive-by-wire systems. IEEE Control Systems, 22(5):64 — 81,
October 2002.

P. Peti, R. Obermaisser, F. Tagliabo, a. Marino, and

S. Cerchio. An integrated architecture for future car
generations. In Proc. of ISORC, pages 2—13, 2005.

FlexRay Consortium. FlexRay communications systems -
protocol specification. http://www.flexray.com.

Broadcom. BroadR-Reach Ethernet hardware, 2011.

H.T. Lim, L. Volker, and D. Herrscher. Challenges in a future
IP /Ethernet-based in-car network for real-time applications.
In Proc. of DAC, pages 7-12, 2011.

IEEE standard for a precision clock synchronization protocol
for networked measurement and control systems, 2008.

T.J. Giuli, D. Watson, and K.V. Prasad. The last inch at 70
miles per hour. IEEE Pervasive Computing, 5(4):20-27,
October 2006.

M. Lukasiewycz, R. Schneider, D. Goswami, and

S. Chakraborty. Modular scheduling of distributed
heterogeneous time-triggered automotive systems. In Proc. of
ASP-DAC, pages 665-670, 2012.

F. Sagstetter, M. Lukasiewycz, and S. Chakraborty. Schedule
integration for time-triggered systems. In Proc. of ASP-DAC,
2013.

J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff,
C. Rochange, H. Casset’, P. Sainrat, and T. Ungerer. RTOS
support for parallel execution of hard real-time applications on
the MERASA multi-core processor. In Proc. of ISORC, pages
193-201, 2010.

N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion.
Multi-source and multicore automotive ecus-os protection
mechanisms and scheduling. In Proc. of ISIE, pages 3734-3741,
2010.

C. Aussagues, D. Chabrol, V. David, D. Roux, N. Willey,

A. Tournadre, and M. Graniou. PharOS, a multicore os ready
for safety-related automotive systems: Results and future
prospects. In Proc. of ERTS, 2010.

A. Baumann, P. Barham, P.E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schiipbach, and A. Singhania. The
multikernel: a new OS architecture for scalable multicore
systems. In Proc. of SOSP, pages 29-44, 2009.

B. Bilgic, B.K.P. Horn, and I. Masaki. Fast human detection
with cascaded ensembles on the GPU. In Proc. of IV, pages
325 —332, June 2010.

F. Jianbin Fang, A.L. Varbanescu, and H. Sips. A
comprehensive performance comparison of cuda and opencl. In
Proc. of ICPP, pages 216 —225, 2011.

S. Shreejith, S. A. Fahmy, and M. Lukasiewycz. Reconfigurable
computing in next-generation automotive networks. IEEE
Embedded Systems Letters, 5(1):12-15, 2013.

S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz. An
approach for redundancy in FlexRay networks using FPGA
partial reconfiguration. In Proc. of DATE, 2013.

R. Charette. This car runs on code. IEEE Spectrum, 46(3):3,
2009.

R. Alur and G. Weiss. Regular specifications of resource
requirements for embedded control software. In Proc. of RTAS,
2008.

M. Kauer, S. Steinhorst, D. Goswami, R. Schneider,

M. Lukasiewycz, and S. Chakraborty. Formal verification of
distributed controllers using time-stamped event count
automata. In Proc. of ASP-DAC, 2013.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separated cache and path analyses.
Journal of Real-Time Systems, 18:157-179, 1999.

N. Singh, T. Mitra, and A. Roychoudhury. Accurate
estimation of cache-related preemption delay. In Proc. of
CODES+1SSS, pages 201-206, 2003.

I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee. A
PRET microarchitecture 1mplementat10n with repeatable
timing and competitive performance. In Proc. of ICCD, 2012.
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,

H. Shacham, S. Savage, K. Koscher, ‘A Czeskis, F. Roesner,
and T. Kohno. Comprehensive experimental analyses of
automotive attack surfaces. In Proc. of Usenix Security, 2011.
K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,

S. Checkoway, D. Mccoy, B. Kantor D. Anderson H. Shacham,
and S. Savage. Experimental secunty analysis of a modern
automobile. In IEEE Symposium on Security and Privacy, pages
447-462, 2010.

F. Sagstetter et al. Security challenges in automotive
hardware/software architecture design. In Proc. of DATE,
2013.

R. Falk and S. Fries. Electric vehicle charging infrastructure -
security considerations and approaches. In Proc. of
INTERNET, pages 58—-64, 2012.

Internet Engineering Task Force. RFC 4301 security
architecture for the internet protocol, 2005.

