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Cyber-Physical Co-Simulation Framework for Smart Cells in Scalable
Battery Packs
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SWAMINATHAN NARAYANASWAMY, MARTIN LUKASIEWYCZ, TUM CREATE Limited
SAMARJIT CHAKRABORTY, TU Munich

This paper introduces a Cyber-physical Co-Simulation Framework (CPCSF) for design and analysis of
smart cells that enable scalable battery pack and Battery Management System (BMS) architectures. In
contrast to conventional cells in battery packs, where all cells are monitored and controlled centrally, each
smart cell is equipped with its own electronics in the form of a Cell Management Unit (CMU). The CMU
maintains the cell in a safe and healthy operating state, while system-level battery management functions
are performed by cooperation of the smart cells via communication. Here, the smart cells collaborate in
a self-organizing fashion without a central controller instance. This enables maximum scalability and
modularity, significantly simplifying integration of battery packs. However, for this emerging architecture,
system-level design methodologies and tools have not been investigated yet. By contrast, components are
developed individually and then manually tested in a hardware development platform. Consequently, the
systematic design of the hardware/software architecture of smart cells requires a cyber-physical multi-level co-
simulation of the network of smart cells which has to include all the components from the software, electronic,
electric and electrochemical domains. This comprises distributed BMS algorithms running on the CMUs, the
communication network, control circuitry, cell balancing hardware and battery cell behavior. For this purpose,
we introduce a CPCSF which enables rapid design and analysis of smart cell hardware/software architectures.
Our framework is then applied to investigate request-driven active cell balancing strategies that make use of
the decentralized system architecture. In an exhaustive analysis on a realistic 21.6 kW h Electric Vehicle (EV)
battery pack containing 96 smart cells in series, the CPCSF is able to simulate hundreds of balancing runs
together with all system characteristics, using the proposed request-driven balancing strategies at highest
accuracy within an overall time frame of several hours. Consequently, the presented CPCSF for the first time
allows to quantitatively and qualitatively analyze the behavior of smart cell architectures for real-world
applications.

CCS Concepts: •Computer systems organization → Embedded and cyber-physical systems; Dis-
tributed architectures; •Hardware → Batteries; •Computing methodologies → Discrete-event
simulation;

Additional Key Words and Phrases: Smart Battery Cells, Battery Management, Co-simulation, Active Cell
Balancing, Cell Balancing Strategy
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1. INTRODUCTION
Electric Vehicles (EVs) and smart energy grids are entering the mass market. For the
progress of these technologies, Electrical Energy Storages (EESs) in form of Lithium-
Ion (Li-Ion) battery packs play a central role. They are gaining importance due to
their favorable energy and power density dominating all other battery chemistries.
Li-Ion battery packs cover a wide range of applications from a few watt-hours of
energy storage capacity in small laptop computers to several megawatt-hours in large
stationary EESs for backup supplies or peak demand/supply management of the highly
volatile renewable energy sources.

Design of Li-Ion battery packs for a certain energy and power requirement comprises
the choice of a cell type, which is then arranged in a series-parallel architecture tailored
to the application. Despite all their benefits, including a negligible memory effect and
long lifetime, Li-Ion battery cells are highly sensitive to certain operating parameters.
Exceeding specified cell voltage or temperature thresholds causes irreversible damage
to the cells which negatively influences their capacity and cycle lifetime up to a complete
loss of function and, in the worst case, a thermal runaway which can lead to an explosion
of the cell, possibly causing a chain reaction in a battery pack. Consequently, Battery
Management Systems (BMSs) are a mandatory component of such battery packs. Their
task is to keep all cells in the battery pack in a safe and healthy operating state
by managing the flow of energy in and out of the battery pack while charging or
discharging. Furthermore, the BMS controls the air or liquid cooling of the pack such
that all parameters are constantly maintained in the specified range.

Traditionally, BMS architectures are designed in a centralized fashion such that a
central master controller processes all information and manages a whole battery pack,
often with slave controllers in a hierarchical setup [Brandl et al. 2012]. Design and
integration of battery packs is a highly customized process and for each new battery
pack, a huge hardware/software integration effort is required. Recently, there is a
trend towards decentralized BMS architectures, which provide increased scalability
and reduce the integration effort [Baronti et al. 2012; Otto et al. 2012; Steinhorst et al.
2014]. Towards this, a natural trend is to build in more intelligence into each cell by
adding its own electronics in form of a CMU, creating a smart cell which monitors and
manages itself. In a battery pack assembled from smart cells, the smart cells coordinate
their actions using a communication interface and cooperate to provide pack-level
battery management in a completely decentralized, self-organizing fashion.

However, designing the architectures and management techniques of such battery
packs requires an appropriate simulation framework that combines the (i) continuous
dynamics arising from the physical and electrochemical characteristics of the cells, and
(ii) the discrete nature of the management algorithms running in software on the CMUs
of each cell. Designing such a Cyber-physical Co-Simulation Framework (CPCSF)
is challenging because of the multiple models required for the components of the
architecture. These models significantly differ regarding their modeling approach and
time constants required for an accurate system-level simulation. We address these
challenges by combining models for all layers of the architecture in a tightly coupled but
modular discrete event simulation framework that, for the first time, enables system-
level simulation with high accuracy of large battery packs with decentralized battery
management.

1.1. Contributions of this Paper
This paper introduces a CPCSF built upon validated models for all components of the
smart cell architecture to enable fast system-level battery pack simulation of long-time
behaviors such as active cell balancing. Active cell balancing is an emerging approach
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to equalize the charge of individual cells in a battery pack efficiently by transferring
charge between them. The requirement for the co-simulation framework is motivated
from decentralized active balancing strategies which have been developed in the scope
of this paper and which cannot be exhaustively analyzed with existing software tools
or hardware development platforms. In addition to decentralized battery management
and smart cell architectures, which are discussed in Section 2, the contributions of this
paper are as follows.

— The smart cell architecture enables cooperative and communication-based decentral-
ized battery management algorithms and influences the hardware/software co-design.
Consequently, we present an approach to designing active cell balancing control al-
gorithms for smart cells. In this context, we propose four request-driven balancing
strategies in Section 3 that cannot be analyzed on system level with existing tools.

— To enable system-level analysis of smart cell architectures, we propose a CPCSF in
Section 4. Here, efficient and accurate validated modeling approaches for battery cell
characteristics, active cell balancing hardware behavior, BMS algorithms and the
communication network to cover all layers of the smart cell architecture are developed
and then combined in the CPCSF.

— We apply the proposed framework in Section 5 to analyze how the request-driven
balancing strategies proposed in this paper can be simulated and evaluated in a
long-term simulation of several hours system time, covering the complete behavior of
a 21.6 kW h EV battery pack consisting of 96 cells in series.

Related work in the domain of battery management, cell balancing, component mod-
eling and system-level BMS simulation is discussed in Section 6. Finally, conclusions
are drawn in Section 7.

2. SCALABLE BATTERY MANAGEMENT WITH SMART CELL ARCHITECTURES
In contrast to traditional hierarchical or centralized BMS architectures [Brandl et al.
2012] where a master controller performs all control and monitoring tasks, smart
battery cells manage themselves individually at cell level. Beyond that, they coordinate
cooperative actions via a communication interface to perform pack-level tasks such as
cell balancing or State-of-Charge (SoC) determination. This decentralized approach
fundamentally changes the implementation of BMS algorithms which now need to be
developed in a distributed fashion. Consequently, besides the hardware architecture
discussed in the following, new algorithmic approaches such as those introduced in
Section 3.2 will be required.

A smart cell provides the functionality to monitor and control itself, as well as to
send and receive messages for organizing pack-level functions in cooperation with
other smart cells. The CMU attached to the cell is powered by the cell itself. Figure 1
illustrates a battery pack formed by five smart cells consisting of battery cells and their
dedicated CMUs. Here, the CMU comprises

— a Sensor and Balancing Module (SBM) to acquire the parameters (voltage, tempera-
ture, current) of the cell and perform cell balancing,

— computation capabilities in form of a microcontroller and
— a communication interface to exchange information between smart cells.

The amount of control circuitry to be embedded into the CMU depends on the choice
which kind of cell balancing shall be supported.

Figure 2 shows a smart cell development platform for five smart cells which was
used as an initial proof of concept in [Steinhorst et al. 2014]. While the feasibility of
decentralized battery management has been successfully shown with this platform, it
does not allow to develop and analyze system-level aspects for larger battery packs built
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Fig. 1. Five smart cells forming a battery pack. Each smart cell consists of a battery cell and its dedicated Cell
Management Unit (CMU). The CMU contains a Sensor and Balancing Module (SBM), a microcontroller and a
communication interface, forming the balancing, computation and communication layers of the architecture.

from smart cells. Therefore, this development platform will be used in the remainder
of this paper for model development and validation in order to enable a co-simulation
framework that can answer questions for a full EV battery pack. EV battery packs usu-
ally contain 96 cells in series to achieve the required power output at feasible voltages
and currents. Examples of properties to analyze are the charge transfer efficiency or re-
quired time for performing active cell balancing with the new request-driven strategies
that will be introduced in the next section.

In the remainder of this section, the requirements and design characteristics of
the SBM, the computational layer and the communication interface are summarized.
Finally, a discussion regarding the possible integration of the components of the CMU
into an Integrated Circuit (IC) in the form of a System-on-Chip is given.

2.1. Sensing and Balancing
The basic properties of a cell are its voltage and temperature at any point in time.
Furthermore, beyond the pack current, the individual balancing currents into and
out of the cell have to be monitored for SoC estimation. These measurements can be
easily performed by an integrated multiplexed Analog-Digital Converter (ADC) that is
connected to the cell terminals, to a shunt resistor or hall effect sensor for balancing
current sensing and to a thermistor or resistance temperature detector.

For charge equalization, all smart cells that form a battery pack must have the same
type of balancing capabilities. For passive cell balancing, where energy from cells with
a higher SoC is dissipated until they reach the SoC of the cell with the lowest charge,
the CMU must contain a switchable resistor that can individually dissipate energy
stored in the cell. For active cell balancing, where charge is transferred between cells, a
modular architecture consisting of homogeneous modules that can be integrated into
each smart cell, such as the ones proposed in [Lukasiewycz et al. 2014], [Kauer et al.
2013] or [Kutkut 1998], are suitable. Details on active balancing will be discussed in
Section 3.

2.2. Computation
As a core feature of the smart cell architecture, the CMU performs computational tasks
to process local information from the sensors of the smart cell, as well as data received
via the communication channel. Consequently, the CMU performs the management
and control of its connected individual cell as well as contributes to the cooperative
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Fig. 2. Development platform from [Steinhorst et al. 2014] showing five smart cells with individual SBMs
and microcontrollers which communicate via a CAN bus.

system-level functionality. Being powered directly by the cell, the computational core of
the CMU requires low-power processing capabilities and efficient power management.
In this context, it has to be considered that the computational performance has to
satisfy the requirements of local calculation of the SoC and State-of-Health (SoH) of
the cell with a sampling rate of the sensor data of up to 100 Hz. Furthermore, the
communication with other smart cells has to be provided. Here, in certain high-activity
periods such as performing active cell balancing during peak load current, the cell may
have to receive and process hundreds of messages per second with status and control
information from other cells when considering an EV battery pack where usually 96
smart cells would be connected in series.

2.3. Communication
The communication architecture chosen for the development platform is a wired CAN
bus as this is a reliable and well-established standard. Here, the emphasis is on broad-
cast messages with only one smart cell transmitting to the bus at a time. Consequently,
hardware message filtering has to be performed such that smart cells only have to
process messages containing information which is relevant to them. Alternatively, a
daisy chain topology could be considered. Here, broadcasts are expensive as messages
have to be relayed across all nodes. Local communication with neighboring nodes can,
by contrast, be performed concurrently, allowing for local parallel communication.

2.4. Integration into a System-on-Chip
The overall goal of the smart cell architecture is to come up with a single mixed-signal
integrated circuit per cell, comprising the whole functionality of the CMU. Integration of
the computational layer and the communication layer as well as most parts of the SBM
is possible with a minimal footprint, low power consumption and cheap production costs.
In case of passive cell balancing chosen as the mode of cell balancing, the complete CMU
could be integrated into a single chip. A typical 32-bit microcontroller (AT32UC3A),
which matches the computational requirements for the CMU, weighs less than two
grams. While this hardware is added at cell level, the smart cell architecture reduces

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 2016.



00:6 S. Steinhorst et al.

the weight of a central controller and might also require less wiring for voltage and
temperature sensing.

For modular active cell balancing architectures, one inductor or transformer would be
required for each smart cell as will be discussed in detail in Section 3. Such components,
however, cannot be efficiently integrated in a single chip together with the rest of
the components of the CMU. Packaging an inductor together with the CMU chip on a
small Printed Circuit Board (PCB) would still allow highly compact smart cells with a
negligible volume and weight of less than 50 g added to the cell which weighs almost
2 kg per cell in state-of-the-art vehicles such as the BMW i3 battery pack with 60 A h
prismatic cells. For further details, a discussion of suitable component choices for
active balancing circuits can be found in [Narayanaswamy et al. 2014]. As conventional
BMS components would be replaced by the CMU of the smart cells, the final volume
and weight balance would be very similar to conventional solutions, but with the
scalability and integration benefits coming from the smart cell architecture and the
energy efficiency of active cell balancing.

3. ACTIVE BALANCING STRATEGIES FOR SMART CELLS
Considering the special characteristics of the smart cell architecture introduced in
Section 2, in this section we will discuss the properties of active cell balancing that will
be modeled in the CPCSF proposed in Section 4.

During charging and discharging of the series-connected cells in a battery pack, cells
tend to, over time, have different capacities and resulting SoCs. This distribution is due
to variations in manufacturing and operating temperature that influence the capacity
of each individual cell and the variation grows with every charging or discharging of the
cells. Furthermore, different self discharge rates of individual cells can cause imbalances
even when the pack is not operated. As Li-Ion cells are very sensitive to minimum and
maximum charge levels, certain thresholds for the SoC have to be maintained for every
cell. If the SoC variation increases over time (i.e., no countermeasures are taken), the
usable SoC of the battery pack decreases.

The cell with the lowest charge will require the whole discharging of the battery to be
stopped once it reaches its lower discharging threshold. The same applies to charging
where the charging process has to be stopped when the first cell reaches its upper
SoC threshold. Therefore, cell balancing is performed to equalize the SoC of all cells in
order to maximize the usable capacity of the battery pack. In the case of passive cell
balancing, only the upper SoC threshold of cells is considered. Therefore, this approach
is only applicable when charging the cells. In order to maximize the battery pack-SoC,
the cells that have a higher individual SoC than others are discharged over a controlled
resistor such that ideally all cells can reach their maximum SoC during charging.

When a battery pack reaches its lower SoC threshold, there may be, however, a huge
number of cells in the battery pack that have a slightly higher SoC. Although there is
still energy available in these cells, the pack cannot be further discharged. Active cell
balancing architectures can utilize this remaining energy as charge can be transferred
between cells. In contrast to passive cell balancing, where the SoC of cells can only be
decreased, active cell balancing can increase the SoC of the battery pack.

The generation of Pulse Width Modulation (PWM) signals required for control of
active cell balancing is a challenging task for a centralized BMS, as the signals have to
be processed concurrently with high accuracy while other tasks are performed. As a
result, passive balancing still dominates the market, despite its obvious deficits, due to
its simpler implementation and significantly cheaper manufacturing cost. Smart cells,
however, allow to generate the PWM signals directly at cell level individually for each
active balancing circuit module which might, together with future cost reductions in
active cell balancing hardware, make this approach economical.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 2016.



Cyber-Physical Co-Simulation Framework for Smart Cells in Scalable Battery Packs 00:7

φ1 φ2, φ4 φ3

c1 c2 c3 c4 c5+ -

Ma
2 M b

2

(a) Balancing circuit configuration

0

Ĵ
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Fig. 3. Balancing architecture configuration for charge transfer between neighboring cells via an inductor.
The transfer is carried out in four phases φ1 to φ4 where appropriate PWM signals σ1 and σ2 are applied to
the MOSFETs.

Figure 3(a) shows a modular inductor-based active cell balancing hardware archi-
tecture that enables charge transfer between neighboring cells that is adapted from
[Kutkut 1998]. It consists of two Metal-Oxide-Semiconductor Field-Effect Transis-
tors (MOSFETs) and one inductor per cell. The balancing process requires the control
of some MOSFETs using PWM signals. Figure 3(b) illustrates the required periodi-
cally occurring phases φ1 to φ4 of the non-overlapping PWM signals which control the
MOSFET switches. Here, in phase φ1, the inductor is charged from cell c2 by closing
Ma

2 and discharged into cell c3 in phases φ2 to φ4. Phases φ2 and φ4 are created by
the non-overlapping behavior of the PWMs, using the body-diodes in the MOSFETs to
prevent short circuits when M b

2 is closed.
Charge transfer can be performed concurrently between several pairs of cells in a

battery pack. However, depending on the balancing hardware architecture, certain
restrictions regarding concurrent charge transfers can be present. In the architecture
illustrated in Figure 3(a), the cells neighboring those performing a charge transfer
should not participate in a charge transfer themselves concurrently for safety reasons.
Consequently, a charge transfer between two cells ci and ci+1 requires to also block cells
ci−1 and ci+2 from engaging in a charge transfer themselves.

3.1. Optimization Criteria for Active Balancing
Active balancing enables the transfer of charge between cells until an equilibrium is
reached in the battery pack. However, there needs to be an algorithmic strategy to
determine the source and destination cells for charge transfers, as well as the order
in which the transfers are performed. Furthermore, the strategy has to consider the
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specific characteristics of the underlying balancing hardware architecture. The signals
to control the balancing have to be generated such that the hardware can perform
the charge transfer in a safe fashion. Short circuits or charged inductors without
freewheeling path have to be avoided at all cost as these situations damage cells and
balancing hardware and might even result in a hazardous thermal runaway of the cells.
Approaches to formalize and verify the safety of switching patterns for active balancing
circuits have been developed in [Baronti et al. 2014a; Lukasiewycz et al. 2014].

There are four main criteria characterizing the quality of a charge equalization
process, directly influenced by the chosen strategy:

(1) Minimize charge losses during the balancing: While active cell balancing transfers
charge between cells, the process is not completely lossless. The resistance of the
components in the current path creates a small energy dissipation. When charge
is transferred between neighboring cells in one direction, a later transfer should
not require charge flow in the opposite direction, as this would render the initial
transfer inefficient. Consequently, the SoC change of each cell should be monotonic
except the case that a cell is used as a shuttle cell where it receives charge from a
neighbor to hand it over to the other neighbor. Furthermore, the global direction
of charge transfers should always be monotonic, hence working towards the global
equalization goal. We will formalize this requirement in Subsection 3.2.

(2) Minimize balancing time until an equilibrium is reached: In scenarios where the
balancing process is performed for the battery pack of an EV, the balancing time
is relevant as it is usually constrained. Both the balancing strategy as well as
the charge transfer current influence the time required to reach an equilibrium
in the pack. For any chosen strategy, increasing the balancing current reduces
the balancing time as more charge is transferred within a certain amount of time.
Increasing the balancing current, however, will also increase resistive losses in
the balancing architecture, as the relation between resistive losses and balancing
current is quadratic. By choosing a strategy that maximizes concurrent transfers
and does not perform inefficient transactions, the balancing time can be minimized
for a chosen current.

(3) Maximize the usable pack-SoC as early as possible during balancing: While a
completely balanced battery is required in order to achieve a maximum pack-SoC
during charging, there are scenarios where the usable SoC of a pack shall be
increased as fast as possible. Here, a strategy that achieves the overall pack balance
fast, but falls short of increasing the SoC of the cell with the lowest charge for a long
time, may not be beneficial. Instead, it might be better to utilize a balancing strategy
which is tailored to increase the SoC of the cells with the lowest charge as fast as
possible while being overall slightly less efficient regarding charge transfer losses or
taking longer to achieve an overall balanced battery pack. The same considerations
apply for fully charging the battery pack, where the cells with the highest SoC
might need to have their SoC reduced quickly such that the charging process does
not need to be stopped due to cells reaching their upper charge threshold.

(4) Minimize the stress on cells induced by balancing: While the goal of cell balancing
is to equalize the SoCs of cells in the battery pack, there is a trade-off between
balancing and the wear exerted on the cells by the charge transfer. Keeping the
cell balancing process active all the time and, hence, cells in balance, might have
an adverse effect on the lifetime of the battery pack as the cells are subject to
much more cycling than in a scenario where balancing is only performed when
it is really required, such as charging to full capacity. In this case, any benefit
of energy conservation by active balancing might be dominated by the reduced
lifetime of the battery cells, leading to a negative economical balance. Whether
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continuous balancing is beneficial depends on several factors such as the specific
cell characteristics, balancing strategy and application scenario. Note that a lower
energy loss of a balancing process also results in a lower stress on the cells as the
overall amount of lost charge is proportional to the amount of transferred charge.
Inefficient charge transfer strategies transfer charge in more steps, hence losing
more energy on the way and consequently also stressing the cells more compared to
a transfer process which achieves the equalization with less charge transfer steps.

3.2. Request-driven Charge Transfer Strategies
The main feature of smart cells is that they maintain their safe and healthy operat-
ing state on their own, cooperating with other cells via communication in order to
perform pack-level functionality. This design paradigm affects the implementation of
BMS algorithms such as active cell balancing strategies. Conventional centralized ap-
proaches where a global computation-centric algorithm decides the balancing strategy
are replaced by distributed communication-based methods. In this context, active cell
balancing can be considered as a negotiation-based task such that each cell achieves its
target to be as close as possible to the average pack-SoC. To achieve this goal, each cell
either requires to receive charge from its peers in case its SoC is below the pack average,
or it has to give charge to its peers in case it is above the pack average. Independent
from any specific strategy with whom and when to exchange charge, the individual tar-
get of achieving a SoC as close as possible to the pack average is the main objective for
each cell. When every cell has its SoC corresponding to the average pack-SoC, the pack
is balanced. Consequently, cell balancing can be performed by letting each cell work
towards its goal to reach the pack average individually by negotiating favorable charge
transfers with its peers by either requesting to receive charge from or acknowledging
to give charge to them. With this general concept of request-driven strategies, it has
to be discussed how cells can negotiate favorable charge transactions with their peers,
fulfilling requirements of efficiency and speed while reaching the global goal. Here, we
assume knowledge of the average pack-SoC in each smart cell, as broadcast-based bus
communication makes this information available without additional cost. Extension
of the algorithms to operate completely with local information would be favorable for
a communication architecture solely based on a daisy-chain and will be addressed in
future work.

All following considerations assume a neighbor-only charge transfer architecture
such as the one presented in Figure 3. Furthermore, each charge transfer between two
cells is performed for a specified time period Tm ∈ R. After this time period has passed,
the cells go again into the negotiation phase. Requests and hence the balancing are
stopped if the SoC range δ ∈ R across all of the cells is smaller than an equalization
threshold value ε ∈ R.

In order to achieve a balanced pack, all cells have to bring their SoC zi ∈ R towards
the pack average Z̄ defined as:

Z̄ =
1

n
·
n∑
j=1

zj (1)

Cells are indexed from 1 to n and connected in series with cell c1 being the cell at the
positive terminal and cell cn being the cell at the negative terminal of the battery pack.
For a cell ci whose SoC zi is below the pack average Z̄, it is obvious that zi has to be
increased by requesting charge from either the upper or lower neighboring cell ci−1

or ci+1, respectively. Note that we refer to a neighboring cell as upper neighbor if it
is closer to the positive terminal of the battery pack and as lower neighbor otherwise.
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Furthermore, we denote with Z̄↑i the SoC average of the subset containing all cells
above cell ci and with Z̄↓i the SoC average of the subset containing all cells below ci:

Z̄↑i =
1

i− 1
·
i−1∑
j=1

zj (2)

Z̄↓i =
1

n− i
·

n∑
j=i+1

zj (3)

Generally, charge transfers are globally efficient and contribute to an equalization of the
battery pack if, from the local perspective of a cell ci, charge is moved in the direction
of the subset with the smaller Z̄i. Hence, a cell ci will request charge from its upper
neighbor if Z̄↑i ≥ Z̄

↓
i and from its lower neighbor otherwise. This policy is beneficial as

it reduces the imbalance between Z̄↓i and Z̄↑i . Therefore, the respective neighbor of cell
ci to request charge from can be identified by ci+λ with:

λ = sgn(Z̄↓i − Z̄
↑
i ) (4)

In the following, four strategies are presented which all operate based on request and
acknowledge processes. Their respective policies under which condition to request and
acknowledge charge transfers are summarized in Table I. Note that Z(min)

i defines the
set of the i smallest elements in Z = {z1, ..., zn}. Algorithm 1 illustrates the request and
acknowledgment processes running on each CMU with the respective policies for the
chosen strategy. To ensure exclusive transfers between pairs of cells, a cell only requests
charge or acknowledges requests if it is in the status idle. A status different from idle is
assigned to smart cells during the time they are involved in an actual charge transfer
or while being blocked due to architectural requirements during charge transfer of their
neighbors.

Below Average Strategy. Each cell ci in the battery pack compares its own SoC zi with
the pack average Z̄ and only requests charge from the neighbor ci+λ if it is below the
pack average Z̄. A request is made in form of a CAN message and the receiver of the
message (identified by an individual node ID) decides whether or not to acknowledge
the request. The request is only acknowledged if the SoC of the requested cell ci+λ is
above the pack average. It will ignore the request otherwise. This strategy ensures that
cells with a below-average SoC will request charge and cells with an above-average
SoC will acknowledge requests and send charge to the requester. As charge requests
are always made in the direction of the higher Z̄i, charge is never transferred in the
wrong direction and hence the monotonicity criterion for the efficiency of the charge
transfer is satisfied. We call this the Below Average strategy as requests are made if a
cell is below average.

Minimum Strategy. While the Below Average strategy by design achieves a high
level of concurrency and works towards a fast equalization of the overall pack, it is
not necessarily increasing the effective pack-SoC as fast as possible. Bringing up the
effective pack-SoC as fast as possible can be beneficial when the maximum possible
energy shall be drawn from the pack, such as in conditions where the unbalanced
SoC may not be sufficient to reach the next charging station for an EV. This has been
discussed in the optimization criteria for cell balancing in the previous subsection.
By contrast, balancing with the strategy presented in the following will increase the
pack-SoC as fast as possible and hence the effective driving range of an EV. For this
purpose, we focus on increasing the SoC of the cells with the lowest charge in the
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Table I. Request and acknowledge policies for balancing strategies.

Strategy r = ci requests from
s = ci+λ if

s = ci acknowledges to r = ci−λ if

Below Average zr < Z̄ zs > Z̄

Minimum zr ∈ Z(min)
n/2

(zs −∆ ≥ zr + ∆) ∨ (zr = min(Z))

Maximum zr < max(Z) ((zs ∈ Z(max)
n/2

)∧ (zs −∆ ≥ zr + ∆))∨ (zs = max(Z))

Min-Max zr < max(Z) (zs −∆ ≥ zr + ∆) ∨ (zr = min(Z)) ∨ (zs = max(Z))

pack. Here, each cell ci determines if it is among the n/2 cells with the lowest SoCs
in the pack. In this case, the cell requests charge from its neighbor ci+λ. A request is
acknowledged by ci+λ if the charge transfer satisfies the requirement that, after the
transfer, the SoC of ci+λ will not become smaller than the one of ci:

zi+λ −∆ ≥ zi + ∆ (5)

Here, ∆ is a conservative estimate of the change in SoC by the transferred charge
which can be easily calculated, considering the average balancing current and the
balancing time. With this requirement, we ensure that the overall SoC of the pack is
monotonically increasing. Furthermore, charge transfers to the cell with the lowest
SoC in the pack are generally acknowledged in order to ensure that there always is
a feasible transfer. We call this the Minimum strategy as it focuses on increasing the
minimum SoC boundary of the pack.

Maximum Strategy. Instead of increasing the SoC of the cell with the lowest charge
in the pack, we can alternatively decrease the SoCs of the cells with the highest charge
in the pack. This approach may be beneficial if the goal is to fully charge the battery
pack. As charging of the pack has to be stopped if the first cell reaches its upper SoC
threshold, prioritizing charge transfers from the cells with the highest individual SoC
allows to achieve a fully charged battery pack in a shorter period of time. For this
purpose, each cell ci except the one with the highest SoC in the pack always requests
charge from its neighbor ci+λ. A request is acknowledged by ci+λ if it is among the n/2
cells with the highest SoC in the battery pack and if the charge transfer satisfies the
requirement that, after the transfer, the SoC of ci will not become larger than the one
of ci+λ as stated in Eq. (5). With this requirement, we ensure that the upper bound of
the individual cell SoCs in the pack is monotonically decreasing. Furthermore, charge
transfers from the cell with the highest SoC in the pack are generally acknowledged
in order to ensure that there always is a feasible transfer. We call this the Maximum
strategy as it focuses on decreasing the maximum SoC boundary of the pack.

Min-Max Strategy. Combining both the Minimum and the Maximum strategy, we can
monotonically increase the effective pack-SoC determined by the cell with the lowest
charge in the pack and monotonically decrease the upper bound of the range of the
SoCs of the cells in the pack. Consequently, requests are made by each cell except
the one with the highest SoC in the pack. Requests are acknowledged as long as the
requirement in Eq. (5) is satisfied. Furthermore, requests are generally acknowledged
if the requester is the cell with the lowest charge or the requested cell has the highest
charge in the pack in order to ensure that transfers are always feasible. We call this the
Min-Max strategy as it is a combination of the Minimum and Maximum strategies.
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Algorithm 1: Request and acknowledge processes of request-driven balancing
strategies for cell ci. Request policy and Acknowledge policy are true or false corre-
sponding to the respective condition in Table I.

1 Request (to receive charge) process()
2 if Request policy and status=idle then
3 request charge from s = ci+λ;
4 end
5 Acknowledge (to send charge) process()
6 if Acknowledge policy and status=idle then
7 success=block cells(s, r);
8 if success then
9 acknowledge request from r;

10 transfer charge to r for time Tm;
11 end
12 unblock cells(s, r);
13 end

4. CYBER-PHYSICAL CO-SIMULATION FRAMEWORK
In order to design and analyze smart cell architectures presented in Section 2, including
the request-driven balancing strategies introduced in Section 3, we propose a Cyber-
physical Co-Simulation Framework (CPCSF) in this section which covers all hierarchy
levels of the system architecture. The cyber-physical characteristics of the battery pack
architecture using smart cells are determined by the interaction of the electrochemical
battery cells with the electrical components of the SBM. The SBM is controlled by the
algorithms running on the computational platform, using a communication network
between the smart cells to achieve system-level functionality. For this purpose, we model
the behavior of battery cells and the balancing architecture with high accuracy, allowing
to analyze the individual SoC of the battery cells and the charge transfer efficiency
with all relevant electrical and timing parameters down to the level of PWM signals
controlling the balancing circuits. Our model of the CMU enables implementation
of request-driven charge transfer strategies and contains a CAN bus communication
interface where the coordination between the smart cells is performed with individual
CAN messages modeled with typical timing characteristics.

The multiple components of our simulation require properties of the charge transfer
PWM signals and the CAN messages to be performed at a time resolution in the
micro- to milliseconds range. On the other hand, the charge equalization process for
a complete EV battery pack can be in the domain of several hours, depending on the
hardware parameters and the battery cell variation. This multi-timescale characteristic
of the system is a challenging scenario for developing a simulator. Either runtimes
tend to be unacceptable with conventional simulation approaches progressing the
whole simulation in the finest time resolution, or the simulation accuracy significantly
suffers from approximations and simplifications. Consequently, an architecture for
the simulation has to be chosen which enables high accuracy, not abstracting away
the effects of the smallest time scale operations, while on the other hand allowing
to analyze the system-level performance. Although other implementation platforms
such as MATLAB/Simulink could be considered, we specifically want to leverage the
benefits of an object-oriented implementation without relying on commercial software,
such that the Open Source release of our framework allows immediate access and
can easily be applied and extended without licensing restrictions. Hence, we chose a
process-based Discrete-Event Simulation (DES) architecture for our CPCSF using the
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Fig. 4. For each layer of the smart cell architecture, a corresponding simulation model is developed for the
CPCSF. Each of the four layers is discussed in the respective subsections 4.1 to 4.4.

SIMPY FRAMEWORK FOR PYTHON [Team SimPy 2015]. In DES, the simulation flow
evolves solely based on events that occur. This is in contrast to continuous simulation
where for each time slice of the finest granularity the system development is tracked.
For efficient DES, a good balance between simulation accuracy and abstraction of
continuous properties to discrete events has to be found. In the remainder of this
section, we introduce the modeling approaches for each layer of our CPCSF and discuss
how we obtain a controlled balance between simulation speed and accuracy. The layers
considered in the simulation are the

(1) cell model and parameters (Section 4.1),
(2) balancing architecture model and parameters (Section 4.2),
(3) battery management algorithms of the CMU (Section 4.3),
(4) CAN bus communication model (Section 4.4).

Figure 4 illustrates the relation between these layers of the smart cell architecture and
the respective simulation models used for the CPCSF. All components are represented
in separate modules such that they can be replaced by other models. Each modeling
level is implemented independently from the others and, due to the object-oriented
software engineering concept, the CPCSF is therefore easy to modify or extend. As we
have designed the system for modularity, the CAN communication could, e.g., easily
be replaced by FlexRay or Automotive Ethernet without affecting other parts of the
implementation. Similarly, we have structured balancing architecture implementations
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Fig. 5. Relation between cell voltage and SoC for a INR18650-25R cell from SAMSUNG, approximated by a
piecewise-linear model.

to be a combination of the equivalent circuit hardware modeling, as discussed in Sec-
tion 4.2, and a capabilities definition, which is then utilized by the balancing strategies
to determine allowed transactions. This modular approach allows to adapt the CPCSF
to other BMS architectures or to implement other balancing architectures and cell
chemistries. We are currently preparing an open-source release of the CPCSF to make
all implementation details available to the scientific community. In the following, the
modeling and simulation aspects for each layer are discussed.

4.1. Battery Cell Simulation
The characteristics of Li-Ion cells comprise a non-linear correlation between the charge
stored in a cell, usually described by a SoC value in percent, and the open-circuit
terminal voltage of the cell. Consequently, in order to simulate operations on the battery
pack such as cell balancing with a quantitative model for the transfers that we identified
in Figure 3(a), we need a model for the battery cells themselves. Figure 5 shows the
voltage evolution and the corresponding SoC during a slow complete discharge (250 mA
≈ 0.1C) of a single INR18650-25R cell from SAMSUNG. The C-rate determines the
discharge current with respect to the capacity of a cell. 1C means that a current is
chosen such that the cell is discharged within one hour, 0.1C refers to a discharge rate
such that the cell is discharged within 10 hours. Balancing is supposed to eliminate
small imbalances in the pack and high currents are thus mostly not required. If behavior
at higher currents becomes relevant, modeling approaches such as proposed in [Petricca
et al. 2013] could be considered. For instance, the large-scale simulation in Section 5
operates only at an average current per cell of about 0.05C. The voltage evolves linearly
even beyond the range of the SoC in use (roughly 20% – 80%). Note that often this
range is used for the usable SoC of battery cells, hence the absolute range between
20% and 80% translates into a usable SoC range between 0% and 100%, respectively.
As cells are significantly stressed in the lowest and highest 20% of the absolute SoC
range, these regions are therefore commonly not used in applications as the cycle life
requirements for the cells usually dominate. There are two kinks around 15% and 5%.
This behavior can be captured well by a piecewise linear model:

V (Q) =


Vζ,0 + ζ0(Q− 0) if Q < Q1

Vζ,1 + ζ1(Q−Q1) if Q1 ≤ Q < Q2

Vζ,2 + ζ2(Q−Q2) if Q2 ≤ Q < Qmax

(6)

For our measurement, we have [Q1 Q2] = [0.05Qmax 0.15Qmax] and [Vζ,0 Vζ,1 Vζ,1] =
[2.5 3.1 3.4]. ζi are then calculated such that the curve is continuous. We use this
piecewise linear model in our framework for the voltage-SoC relation of the simulated
battery cells in the pack.
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Fig. 6. The simulation back-end (a) for the SBM first calculates the PWM timing from the present voltages,
the circuit parameters and the desired peak current. It then simulates transferring charge for a macro step
of Tm – typically over 105 cycles – and yields the ensuing voltages. During each cycle (b), the transmitting
cell charges an inductor for a period of Ts. After switching over – a brief moment that we treat as switching
loss – the inductor then discharges into the receiving cell for a period of Tr . Finally, there is break period of
Tb where no transistor is conducting and the inductor discharges very briefly over the diode of a MOSFET
before the cycle repeats.
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Fig. 7. By collecting resistances along the current path for configurations Φ1, Φ3 and Φ2,Φ4 shown in
Figure 3(a), the charge transfer can be captured by equivalent circuits. As we will show, they are structurally
identical for all possible transfers and can thus form the backbone of an analytic charge transfer model.

4.2. Charge Transfer Simulation
For the analysis of pack-level active cell balancing performance, we want to perform
long-term balancing simulations (several hours) of large battery packs (≈ 100 cells)
with high accuracy. To that end, we first outline an efficient short-term model for
the behavior within individual PWM cycles in Section 4.2.1. This recursive model
outperforms general purpose simulation approaches and can perform small balancing
simulations. With many large balancing scenarios in mind, we further improve the
simulation speed by deriving a closed-form solution for this recursion in Section 4.2.2.
The performance of that model, summarized in Figure 6, is evaluated in Section 4.2.3.

4.2.1. Short-term transfer model. Once the transfer partners are identified, corresponding
equivalent resistances can be established. In the circuit from Figure 3(a), we can
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calculate them as

Rs =RM +RL +RC Rr =RM +RL +RC (7)

where RM , RL, RC refer to the resistance of the involved MOSFET, inductor and
battery cell, respectively. Aggregated in this fashion, the transfer dynamics can then be
calculated based on the equivalent circuits in Figure 7.

Transfer losses. The cell voltage is assumed to remain constant during individual
PWM cycles. This is justified by the high PWM frequency (1 kHz to 100 kHz) and the
slowly evolving cell voltage (the discharge in Figure 5 occurs over multiple hours).
Both charging (Ts) and discharging (Tr) phases (see Figure 7) are then governed by a
first-order Ordinary Differential Equation (ODE). Using standard techniques, detailed
in, e.g., [Baronti et al. 2013] we obtain the following description for the intra-cycle
behavior.

i(t, V, i0, R) =
V

R
− V − i0R

R
exp

(−R
L
t
)

(8)

Td(id, V, i0, R) =
−L
R

log
(V − idR
V − i0R

)
(9)

q(T, V, i0, R) =
V

R
T +

L(V − i0R)

R2

[
exp

(−R
L
T
)
− 1

]
(10)

Here, i is the inductor current, Td is its inversion, i.e., a time period that yields a desired
current id = i(Td), and q =

∫ T
0
i is the charge transferred during a time period T . The

parameters of these formulas must be adjusted according to the individual phases. With
the respective cell voltages Vs, Vr, the corresponding resistances Rs, Rr and the peak
current Ĵ (see Figure 6), this parameterization summarizes to

[V R id i0] =


[
Vs Rs Ĵ 0

]
for inductor charging (Ts),[

−Vr Rr 0 Ĵ
]

for inductor discharging (Tr).
(11)

Eq. (10) includes dissipative losses from the circuit components and is sufficient to drive
a simulation by calculating the evolution of all participating battery cells.

Switching losses. In addition to dissipative losses, we also face switching losses from
the transitions of the PWM signals (cf. Figure 3(a)). These losses summarize to

Esw,s =
1

2
(tOFFĴVs + COSSV

2
s ) Esw,r =

1

2
(tONĴVr + COSSV

2
r ). (12)

Here, COSS is the output capacitance of the transistor that must be charged before
conduction. tON and tOFF summarize turn-on delay plus rise time and turn-off delay
plus fall time, respectively, and can be obtained from the transistor data sheets. The
corresponding loss terms summarize the overhead incurred during the short signal
transition at Ĵ from φ1 to φ2 for tOFF and φ2 to φ3 for tON where the current cannot be
utilized. The transition from φ4 to φ1 does not incur the loss because i = 0 there. Please
refer to Chapter 4.3 Switching Losses in [Erickson and Maksimovic 2001] for further
information.

4.2.2. Long-term transfer model. The equations developed in 4.2.1 quantitatively describe a
single PWM cycle. Over many cycles, they define two recursions. We formulate these in
terms of voltage because that allows for a long-term closed form solution with further
speedup. Using the charge formulation from Eq. (10) within one linear part of the
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voltage model from Eq. (6), the sender voltage becomes

Vs[k + 1] =Vs[k]− ζqs(Vs[k])

=

[
1−

(
ζ
Ts
Rs

+ ζ
L

R2
s

(
exp

(−Rs
L

Ts

)
− 1
))

︸ ︷︷ ︸
=:α

]
Vs[k] = αkVs[0]. (13)

Similarly, the receiver voltage evolves as follows.

Vr[k + 1] =Vr[k] + ζqr(Vr[k], i0) + ζqb

=Vr[k] + ζ

[
−Vr[k]Tr

Rr
+
L(−Vr[k]− i0Rr)

R2
r

(
e−RrTr/L − 1

)
+ qb

]
=

[
1− ζ Tr

Rr
− ζ L

R2
r

(
e−RrTr/L − 1

)
︸ ︷︷ ︸

=:β

]
Vr[k]− ζ Li0

Rr

(
e−RrTr/L − 1

)
+ ζqb︸︷︷︸

=:γ

(14)

Here, qb is a constant correction term for the charge transferred over the safety diode
during Tb (see Fig. 6). We use the estimate qb = i2b,min

L
Vr[0] with the lowest ib and the

lowest receiver voltage Vr[0] of the respective PWM cycle. Since qb is extremely small
compared to qr, better estimates are usually not necessary, even omission may be
acceptable in many cases (see also Section 4.2.3).
After defining α, β ∈ Rr, we now want to substitute i0. We thus consider the varying
peak current at the end of the charging phase as given by Eq. (8) and introduce another
helper constant d ∈ R:

i0 =
1

Rs

(
1− e−RsTs/L

)
Vs[k] =: dVs[k] (15)

Given the current in this form, we can now transform Eq. (14) further:

Vr[k + 1] =βVr[k] + γ + ζ
−L
Rr

(
e−RrTr/L − 1

)
d︸ ︷︷ ︸

=:θ

Vs[k] = βVr[k] + γ + θαkVs[0] (16)

Next, we introduce auxiliary voltage Vx[k] := Vr[k]+ αkθ
β−αVs[0] with the simpler recursion

Vx[k + 1] = βVx[k] + γ. (17)

We can thus calculate Vr[k] by transforming Vx[0] = Vr[0] + θ
β−αVs[0] and then using

Vr[k] = βkVx[0] +
βk − 1

β − 1
γ − αkθ

β − α
Vs[0]. (18)

Note that this requires β 6= α which follows from Rs < Rr in most cases. If required, it
can even be enforced by slightly altering Tr, i.e., by transferring slightly more charge
over the diode at the end of the discharge phase (cf. Figure 6). Together with Eq. (13),
Eq. (18) represents a closed-form long-term transfer model, allowing the efficient
simulation of thousands of PWM cycles in the CPCSF with high accuracy.

Switching losses in long-term transfer model. Dividing the energy dissipated during
switching (Eq. (12)) by its respective voltage yields the corresponding charge that is
lost during each PWM cycle. Solving the recursion with this additional data changes
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the following parameters, leaving γ̃ := γ,

α̃ := α− ζ

2

[
Coss + dtOFF

]
θ̃ := θ − ζ

2
dtON β̃ := β − ζ

2
Coss. (19)

With the parameters from Eq. (19), we can then operate Eq. (18) and Eq. (13) as before.

4.2.3. Long-term transfer model evaluation. In the following, we evaluate the closed-form
model – Eqs. (13) and (18) – that we developed in Section 4.2.2. We consider every
combination of the following parameter vectors as an individual scenario.

Ĵ ∈ {0.25, 1.0, 2.0} (Rs Rr) ∈
{

(0.01 0.012) , (0.5 0.6) , (1.3 1.4)
}

Qmax ∈ {0.1 A h, 1.1 A h} (zs[0] zr[0]) ∈
{

(0.4 0.3) , (0.8 0.2) , (0.45 0.65)
}

(20)

For a macro step size of 10 s, driving the simulation in a step-by-step fashion requires
around 3 s for each two-cell scenario on an INTEL(R) XEON(R) CPU E5-1620. This
happens because 10 s of balancing time can easily correspond to 105 PWM cycles. By
contrast, the closed form expression we developed in Section 4.2.2 requires less than
100 µs on average. The speedup factor is around 45000 overall for this duration compared
to iterative methods calculating individual steps such as the models from [Kauer et al.
2015a; Kauer et al. 2015b]. At the same time, the closed-form long-term model achieved
a worst case relative error given by εrel :=

‖∆Qcf−∆Qstep‖
‖∆Qstep‖ in the order of 10−5 without

including qb in Eq. (14). Including this correction term reduces the relative error to
εrel ≈ 10−8. Note that higher capacities as in our final case study (Section 5) lead to an
even more benign situation since the voltage changes more slowly.

4.3. Battery Management Algorithms Simulation
Corresponding to the system architecture described in Section 2, each smart cell in
the CPCSF operates as an individual entity. Consequently, the computational device
of each smart cell, which is represented by a microcontroller core, is considered as an
independent process in the DES of the CPCSF. On our virtual computational core, we
mimic the behavior of a real-time operating system such as Micrium µC/OS-III which
was used for the development platform shown in Figure 2. Real-time operating systems
allow to run several processes in a logically parallel fashion, using a time-sliced schedule
considering process priorities. In the CPCSF, we implement individual processes for
monitoring of the SoC of the cell, the operation of the CAN communication interface
as well as the request and acknowledge processes of the active balancing strategy as
described in Algorithm 1. Furthermore, charging control of the cell, processing and
storing information received from other cells as well as safety-related operations are
implemented, such as preventing over- and undercharging the cell. All acquisition of
performance metrics of the simulation is implemented via an external monitor concept,
running in a separated environment. Consequently, no non-functional code is integrated
in the actual processes implementing the devices in the simulation, allowing future
performance evaluation of different computational platforms.

4.4. CAN Communication Simulation
Exchange of information between smart cells is implemented using the CAN bus, a
field bus initially designed for automotive use. The technology was first introduced
in 1991 by BOSCH [Bosch 1991]. Due to its early public documentation and available
implementations in Very High Speed Integrated Circuit Hardware Description Lan-
guage (VHDL), practically every microcontroller manufacturer offers microprocessors
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Table II. Frame duration at different CAN speeds. Exemplary a message
length of ndata = 4 byte is assumed.

Data Rate [kbit/s] 33 83 125 250 500 1000

Tbit [µs] 30.03 12 8 4 2 1
Tframe [ms] 3.75 1.49 1 0.5 0.25 0.125

with included CAN interfaces. Thus it constitutes an affordable and robust network to
be used in the proposed environment.

Every Electronic Control Unit (ECU) connected to the bus is equal in terms of
sending and receiving capabilities. The broadcast-oriented topology uses Carrier Sense
Multiple Access / Collision Resolution (CSMA/CR) to control access of transmitting
units. Every CAN frame consists of a header containing an 11 or 29 bits identifier,
a payload section with up to 8 data bytes and a trailer employing a 15 bits Cyclic
Redundancy Check (CRC). Widely adopted transmission rates range up to 125 kbit/s
(Low Speed) and 1 Mbit/s (High Speed), utilizing a two wire bus and are reduced to
33 kbit/s and 88 kbit/s on single wire CAN respectively. Transmitted logical values are
generated high-impedance and thus recessive (1, high) and low-impedance therefore
dominant (0, low). Thus, lower Identifier (ID) values are prioritized due to their leading
zeros.

In the CPCSF, parameter information exchange as well as negotiation of active
balancing transactions on the cell level is performed via individual messages over CAN.
To ensure realistic behavior of the bus simulation, messages are put into a send queue
in the respective CMU, realizing a First In First Out (FIFO) buffer. Enqueueing a new
message into the CAN buffer creates a new event in the simulation environment for
bus access. Taking into account the message length and CAN bus speed, waiting time
delays for message transmission on the bus are implemented. Transmission time of a
frame Tframe is given by:

Tframe < 1.25 · (67 bit + ndata · 8 bit) · Tbit (21)

Here, ndata is the length of the message payload given in bits and Tbit is the trans-
mission time of a single bit. The base length of a message is 67 bit, representing the
length of header and trailer in a frame. The provided equation is a conservative approx-
imation, since actual message lengths also depend on bit stuffing. Table II shows frame
transmission times for different CAN data-rates at a data length of ndata = 4 byte. This
is due to the fact that most of the traffic between cells is generated by cell parameter
broadcasts comprising a 32 bit single precision float value.

Lower speed CAN topologies yield a higher resistance to Electromagnetic Interference
(EMI) and are thus preferable in safety-critical environments such as automotive, where
high frequencies (i.e. PWM generation) exist. Here, 125 kbit/s is commonly used for
communication in body electronics. Regarding the simulation framework, faster CAN
transmission rates yield the requirement of a finer time granularity of the discrete
events. Simulating the bus system from the hardware platform discussed in Section 2
for the proposed CPCSF, a CAN bus speed of 125 kbit/s, resulting in a transmission
delay of approximately 1 ms for each message sent, is chosen.

5. EXPERIMENTAL RESULTS
In this section, we discuss the experimental setup and the results obtained with the
Cyber-physical Co-Simulation Framework (CPCSF) introduced in Section 4. A screen-
shot of the Graphical User Interface (GUI) frontend of our CPCSF implementation
visualizing the SoC evolution over time during an active cell balancing run of a 96 smart
cell battery pack, using the Minimum strategy is shown in Figure 8. All results were
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Fig. 8. Co-simulation framework performing simulation of active cell balancing with the Minimum strategy
for 96 smart cells forming a 21.6 Wh battery pack.
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Fig. 9. Scatter plot showing the balancing duration until 0.1% difference in the pack was obtained and the
corresponding energy loss encountered by the balancing of 300 SoC variations with a range of 3% for the
analyzed battery pack with 96 smart cells. Each balancing strategy was simulated for the 300 SoC variations,
resulting in 1200 points in the plot.

computed on a quad-core INTEL(R) XEON(R) CPU E5-1620, running at a maximum
clock of 3.60GHz with 32GB of RAM.

To show the capabilities of the system-level simulation and assess the proposed
request-driven balancing architectures in a realistic environment, we model a typical
EV 21.6 kW h battery pack, using the smart cell architecture described in Section 2.
Besides the smart cell architecture, its parameters are similar to the packs found in
recent electric vehicles such as the Nissan Leaf or BMW i3. Our pack is arranged in a
96S24P fashion with a nominal voltage of 360 V. This term specifies that it consists of
96 series-connected smart cells with each smart cell comprising 24 parallel-connected
SAMSUNG INR18650-25R cells, each with a nominal voltage of 3.75 V and a nominal
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Fig. 10. Exemplary SoC evolutions over time with an initial SoC variation obtained from random seed 1000
(highlighted in Figure 9) of the Below Average and the Min-Max strategies.

capacity of 2.5 A h. Note that parallel-connected cells are electrically indistinguishable
and hence are considered as a single cell from a battery management perspective. We
chose these cells as we have been able to characterize them in our laboratory, yielding
the discharge curve shown in Figure 5 and exhibiting a typical internal resistance of
0.02215 Ω.

For the simulations, we have performed a batch run on 300 different SoC variations
in the battery pack. While, for comparability, we always used a SoC range of 3%
between lowest to highest cell-SoC in the pack, the starting point of the range is
varied between 20% and 80% SoC. Each cell currently not involved in a charge transfer
checks its requirement to request charge once per second. The pack is considered
as equalized when the SoC deviation δ = max(Z) − min(Z) falls below ε = 0.1% and
the balancing process is stopped. Note that for a 21.6 kW h battery pack, ε = 0.1%
results in a maximum deviation of 21.6 W h across the whole pack, which we consider
as reasonable. With each of the 300 SoC variations, we performed simulations for the
proposed four balancing strategies Minimum, Maximum, Min-Max and Below Average,
resulting in a total of 1200 simulation runs with an overall simulation runtime of
97 h. Hence, a single simulation run for a complete equalization of the 96-cell battery
pack takes less than 5 minutes on average. This enables fast evaluation of changes in
algorithms and architectures. The simulation runs were performed with the parameters
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of the balancing architecture summarized in the following:

[RL RC RM L Qmax] =
[
0.005Ω 1

240.02215Ω 0.0011Ω 12 µH 24× 2.5 A h
][

Ĵ Javg ton toff Coss
]

= [12 A 3 A (6.7 + 6.0) ns (34 + 4.4) ns 1700 pF] (22)

These values correspond to measurements obtained on a hardware implementation
of the circuit modeled in Section 4.2, comprising a BOURNS 1140-120K-RC inductor,
INFINEON OPTIMOS BSC010NE2LS transistors and SAMSUNG INR18650-25R
battery cells. Note that the peak current Ĵ of 12 A in the inductor results in an average
balancing current Javg of 3 A.

The results illustrated in the scatter plot in Figure 9, comparing balancing duration
and energy loss of the individual balancing runs, show that both the Min-Max and
Below Average strategies show very compact results across the different SoC variations.
Table III summarizes the obtained minimum, maximum and average values for the
balancing time and energy loss. For comparison, results for passive balancing with
Javg = 0.5 A and full concurrency are also given. Here, all cells are brought to the SoC
of the cell representing the pack minimum. Consequently, high energy losses of more
than one order of magnitude in the average case compared to active balancing with the
Below Average strategy are encountered. Note that for passive balancing, the balancing
current only influences the balancing time and not the energy efficiency. High current
values, however, generate significant heat which has to be dissipated by a cooling
system in order not to damage cells or circuitry. A detailed discussion of this trade-off
comparing the performance of active and passive balancing techniques for centralized
BMSs can be found in [Baronti et al. 2014b].

For active balancing, the results clearly show that the Min-Max and Below Average
strategies dominate the Minimum and Maximum strategies. For certain SoC variations,
both the Minimum and Maximum strategies exhibit a significant increase in balancing
time, resulting from a decreased level of possible concurrent transfers due to the
more restrictive request and acknowledge policies compared to the Below Average and
Min-Max strategies. On the other hand, neither of the two strategies Min-Max and
Below Average dominates the other, with the Min-Max strategy being slightly faster
and the Below Average strategy being slightly more energy efficient. For these two
strategies, exemplary SoC developments over time with the same initial variation
(highlighted in Figure 9) are plotted in Figure 10. The different characteristics of the
balancing strategies can clearly be seen with the Below Average strategy performing
every transfer between cells below the pack-SoC average requesting charge and the cells
acknowledging the request if they are above the SoC average. Here, although achieving
a relatively fast equalization with a very low energy loss and high final pack-SoC, the
effective pack-SoC, determined by the lowest cell SoC within the pack, only increases
very late in the balancing run and stays at the starting value for more than one hour.
By contrast, the Min-Max strategy immediately increases the effective pack-SoC by
bringing up the cells with the lowest SoC in the pack, as well as directly bringing the
cells with the highest SoC towards the average. This is beneficial in situations where the
pack either has to mobilize additional effective capacity, e.g., for increasing the driving
range of an EV by balancing when the pack approaches its minimum SoC, or when the
pack shall be charged fully, requiring that no cells with significant above-average SoC
are present. Furthermore, the Min-Max strategy is more than half an hour faster than
the Below Average strategy in this scenario, however with a slightly higher energy loss.
Finally, to illustrate the scalability of the CPCSF, we have performed runs of the Below
Average strategy with the same parameters as above but with a pack containing 12,
24, 48, 96 and 192 smart cells in series, respectively. The calculated runtime of the
simulator for simulating 60 s of balancing behavior in the pack are given in Table IV.
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Table III. Results of the simulation runs for the four active balancing strategies
and passive balancing with 300 SoC variations each.

Strategy Balancing Time [h] Energy Loss [Wh]
Min Max Avg Min Max Avg

Below Average 1.725 10.475 4.411 7.958 39.477 19.302
Minimum 1.850 26.350 6.884 11.490 58.806 26.657
Maximum 1.775 13.792 4.473 10.850 44.637 22.251
Min-Max 1.475 8.533 3.679 10.886 59.560 26.863
Passive 6.348 6.948 6.804 192.54 298.05 249.48

Table IV. Runtime for simulating 60 s of balancing behavior for different battery pack sizes.

Pack Topology 12S24P 24S24P 48S24P 96S24P 192S24P
Simulation runtime [s] for 60 s balancing 0.13 0.42 1.18 4.4 16.8

While there is a quadratic growth in runtime with increasing number of cells, the
overall short simulation times show the suitability of the framework for rapid design
evaluation.

6. RELATED WORK
In this section, the related work relevant in the context of this paper is discussed.

6.1. Design of Battery Management Systems
A comprehensive overview covering the state of the art of Li-Ion BMSs for EVs is given
in [Brandl et al. 2012]. In commercial battery packs, centralized BMS architectures
are still dominating. Here, a central master controller specifically tailored to the pack
acquires all sensor information such as voltage and temperature of individual cells as
well as the pack current. Additionally, it processes and creates control signals for cell
balancing. Maintaining the Li-Ion cells in their safe operating range such that upper
and lower thresholds of SoC and temperature are not crossed is mandatory in order not
to damage the cells and the main task of the BMS. In this context, challenges and best
practices of BMS design are thoroughly discussed in [Lu et al. 2013].

The recently emerging approaches to decentralize the control of the battery pack are
driven by the requirements of higher efficiency, modularity and easier integration in
order to cope with the perennial demand for shorter design cycles and time-to-market.
Decentralization at the level of sensing and balancing hardware with conventional
centralized control is proposed in [Baronti et al. 2012; Otto et al. 2012]. The concept
on which this paper builds upon is characterized by fully autonomous smart cells that
individually control their parameters and coordinate their actions with other smart
cells via communication. It was initially introduced in [Steinhorst et al. 2014].

6.2. Active Cell Balancing Architectures and Strategies
With the goal to equalize the charge levels of individual cells in a series-connected
battery pack, cell balancing is an important task performed by BMSs. Various cell
balancing approaches are reviewed in [Cao et al. 2008; Moore and Schneider 2001;
Daowd et al. 2011]. Generally, architectures are classified into passive and active cell
balancing. Passive cell balancing dissipates excess energy of cells above minimum pack
SoC via a resistor until they reach the charge level of the weakest cell [Kutkut and
Divan 1996; Stuart and Zhu 2009]. While this technique is easy to implement and has
low cost in comparison with the active cell balancing techniques, it suffers from low
efficiency since all excess energy is dissipated as heat across the balancing resistors.
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In contrast to passive cell balancing, active approaches increase the energy efficiency
of the balancing process significantly by transferring energy from cells with high SoC
to cells with low SoC instead of dissipating it.

While capacitors and transformers can be employed as the energy storage element
in active balancing architectures, inductor-based approaches are beneficial regarding
energy efficiency and hardware architecture, especially in the context of smart cells
where modularity is important and homogeneous modules are required for each SBM.
Here, approaches range from simple architectures that can perform charge transfers
only between neighboring cells such as the one used in this paper, see [Kutkut 1998], to
complex architectures that enable non-neighbor transfers and cell bypassing [Kauer
et al. 2013] or enabling many-to-many transfers [Kauer et al. 2015b].

6.3. Modeling of Cell Balancing Architectures
In the control domain, it is typically assumed that the effective balancing current can
be freely chosen as an input variable. Under this assumption, the complex problem of
optimal charge routing can be formulated as a linear program. However, this ignores
actuation aspects and the influences of changing cell voltages. The rising voltage of
the receiving cell, for instance, affects the switch timing and, therefore, the amount of
charge transferred per cycle. Assuming linear dynamics, the worst-case efficiency of
various balancing topologies can be calculated [Preindl et al. 2013] and model predictive
control with global knowledge and a horizon of 1 becomes an optimal strategy [Danielson
et al. 2013]. In [Caspar and Hohmann 2014], the authors suggest to continuously adjust
the PWM settings to keep the current high. This approach still has other drawbacks,
however, like omitting the energy lost in transistor switching or modeling balancing
current and link usage as a single variable. Both of these simplifications may be
justifiable in the optimization setting operated in. For simulation approaches on the
other hand, the state of the art is determined by intra-cycle models that provide
a closed-form equation for individual PWM cycles where they achieve SPICE-level
accuracy [Kauer et al. 2013; Kauer et al. 2015a]. While they are hugely faster than
SPICE simulations, these approaches are only sufficient for evaluating individual
balancing scenarios. We have built upon these in Section 4.2.2 and derived a closed
formulation for long-term transfer that can be evaluated instantly.

6.4. System-level Balancing and BMS Simulation
While co-simulation approaches are established in other domains such as smart grid
[Hua et al. 2011], system-level simulation of BMS and active cell balancing architec-
tures, especially enabling development and investigation of balancing strategies, has
not been extensively considered in literature. A simulation framework to compare dif-
ferent active balancing approaches with centralized control including the load behavior
of an EV drivetrain is presented in [Caspar et al. 2014]. Approaches to analysis of
balancing architectures in BMSs are usually hardware-oriented and cover module-
level or intra-module verification aspects [Guerin and Liu 2010; Baronti et al. 2014a;
Lukasiewycz et al. 2014] and only implicitly investigate the global balancing strategy
suitable for a given architecture. In [Lee and Cheng 2005], a balancing strategy using
fuzzy control is presented and evaluated using SPICE simulation for a single pair of
cells transferring charge, however not considering pack-level criteria. An approach from
the control domain investigates the performance of seven balancing architectures with
an optimized centrally controlled strategy in [Preindl et al. 2013], but abstracts certain
hardware characteristics that we consider as important in our CPCSF for the required
level of simulation accuracy. A first approach to fully distributed algorithms for charge
equalization of supercapacitors is presented in [Liu et al. 2015].
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7. CONCLUDING REMARKS
In this paper, we have introduced a Cyber-physical Co-Simulation Framework (CPCSF)
for battery packs equipped with smart cells that allows rapid design and analysis of
algorithms, hardware architectures and parameter sets. Based on the concept of smart
cells that consist of a cell and a Cell Management Unit (CMU) which locally manages
the parameters of the cell, Battery Management System (BMS) functionality on pack-
level is achieved by cooperation of the smart cells via communication. Such a completely
decentralized architecture requires novel algorithms for BMS functions which are
centrally controlled in state-of-the-art architectures. Here, we illustrate the algorithmic
possibilities of the smart cell battery pack architecture by introducing a new class of
request-driven cell balancing strategies. Cell balancing is one of the most important
functions of a BMS and involves both PWM signals in the microsecond range as well
as overall pack charge equalization happening in the range of hours. Consequently,
accurate analysis of the system-level behavior is difficult without a capable simulation
framework comprising detailed optimized models of the system components. The CPCSF
that is introduced in this paper combines sophisticated modeling approaches of system
components such as the battery cells, balancing hardware, algorithms, computational
devices and communication channel using a Discrete-Event Simulation (DES) approach.
This enables a fast and accurate multi-level cyber-physical co-simulation of a complete
EV battery pack with a capacity similar to the ones in the Nissan Leaf or BMW
i3, but equipped with smart cells. As a consequence, this allows, for the first time,
to quantitatively and qualitatively analyze the proposed request-driven balancing
strategies in a realistic setup.
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