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Security in automotive in-vehicle networks is an increasing problem with the growing connectedness of
road vehicles. This paper proposes a security-aware priority assignment for automotive Controller Area
Network (CAN) platforms with the aim of mitigating scaling effects of attacks on vehicle fleets. CAN is
the dominating field bus in the automotive domain due to its simplicity, low cost, and robustness. While
messages might be encrypted to enhance the security of CAN systems, their priorities are usually identical
for automotive platforms, comprising generally a large number of vehicle models. As a result, the identifier
uniquely defines which message is sent, allowing attacks to scale across a fleet of vehicles with the same
platform. As a remedy, we propose a methodology that is capable of determining obfuscated message identifiers
for each individual vehicle. Since identifiers directly represent message priorities, the approach has to take
the resulting response time variations into account while satisfying application deadlines for each vehicle
schedule separately. Our approach relies on Quadratically Constrained Quadratic Program (QCQP) solving
in two stages, specifying first a set of feasible fixed priorities and subsequently bounded priorities for each
message. With the obtained bounds, obfuscated identifiers are determined, using a very fast randomized
sampling. The experimental results, consisting of a large set of synthetic test cases and a realistic case
study, give evidence of the efficiency of the proposed approach in terms of scalability. The results also show
that the diversity of obtained identifiers is effectively optimized with our approach, resulting in a very good
obfuscation of CAN messages in in-vehicle communication.
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1. INTRODUCTION
1.1. Automotive CAN Security
Automotive networks that comprise up to 100 Electronic Control Units (ECUs) and
multiple bus systems are a result of an incremental design process over the past 25
years [Di Natale and Sangiovanni-Vincentelli 2010]. This process is equally driven both
by the necessity to innovate and very tight budget constraints. As a matter of fact, these
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Fig. 1. Illustration of a CAN frame. The identifier is used for arbitration and, therefore, cannot be encrypted
while the data might be encrypted. As a result, the identifier exposes information about the type of data to
attackers due to the fixed coupling of identifiers and data in the automotive domain. The used acronyms
are: SOF - Start of Frame, RTR - Remote Transmission Request, CRC - Cyclic Redundancy Check, ACK -
Acknowledgment Slot, EOF - End of Frame.

networks used to be isolated in nature without any permanent communication interface
to external devices. Due to changing customer requirements, modern vehicles have to be
cloud-connected and integrate functions such as smart routing, advanced infotainment,
etc. This, however, leads to potential threats as networks that initially have not been
designed with security in mind are exposed to access from external devices.

One approach to decrease the security risks is the integration of firewalls in those
devices that have an external connection. However, once these devices are compromised
or bypassed, the bus systems and their data are exposed. Considering these security
risks in the automotive domain, the large number of vehicles that might be affected by
an attack has to be taken into account. As vehicle models are often using a common
hardware/software platform in order to reduce development efforts [Wilhelm 1997], an
attack can be executed with minimal or no changes on a large number of vehicles. This
scaling multiplies the effects of any remote attack and makes large scale attacks on
automobiles with comparatively small efforts feasible.

In todays vehicles, multiple different networks are used. While FlexRay [FlexRay
Consortium 2005] and Ethernet [Bello 2011] can provide high bandwidth and determin-
ism, CAN [Bosch 1991] is still the prevalent bus system in the automotive domain. CAN
is a shared bus standard that relies on a fixed-priority non-preemptive communication,
providing a very cheap and reliable solution for distributed functions. While data trans-
mission over CAN is susceptible to congestion, it may be used for real-time functions
like Anti-lock Braking System (ABS) or Electronic Stability Program (ESP) that require
strict end-to-end latencies. By considering all streams on the bus at design time, it is
possible to determine the exact worst-case transmission time of any message. A CAN
frame is illustrated in Figure 1. CAN has a data-rate of up to 1Mbit/s and a maximal
payload of 8 bytes per message. The identifier field is 11 bits (29 bits for extended CAN)
and used for arbitration such that messages with lower values are always prioritized
in case of bus contention. The arbitration makes use of the binary representation of
priorities and the fact that the transmission of a logical 0 is dominant on the bus. It
should be noted that identifiers have to be unique to prevent conflicts. In this paper we
will use identifier and priority of a CAN message interchangeably.

Recent developments towards CAN with Flexible Data-Rate (FD) [Hartwich 2012]
increase the payload of a single frame up to 64 bytes, enabling for instance security
features like encryption and key exchanges. While encryption can protect data partic-
ularly with a higher data-rate using CAN FD, the message headers have to remain
unencrypted as the arbitration method requires a binary encoding. Therefore, attackers
might obtain or manipulate vehicle data that is transmitted over the shared bus once a
single device is compromised and when the mapping from message identifiers to signals
is fixed and known. Retrieving information about this relation between identifiers
and data can be carried out by an attacker for a specific platform via the On-Board
Diagnostics (OBD) port and reverse engineering, using unlimited resources in terms of
time and computational power. Since CAN message priorities are static and identical
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for a certain vehicle platform, the obtained information can be directly applied to an
entire fleet of vehicles to implement a potential exploit.

As a remedy, we propose an approach that allows to determine specific message
identifiers per vehicle for CAN systems while still satisfying all real-time end-to-end
latencies. Thus, the relation between identifier and data is different for each vehicle
and attackers have to face an additional obstacle when implementing exploits that are
supposed to affect an entire fleet of vehicles.

1.2. Contributions of the Paper
This paper proposes a novel approach to improve the security of CAN buses in the
automotive domain. Orthogonally to encryption of messages and firewalls, we propose
an obfuscation of message identifiers of CAN buses for vehicle platforms. By obfuscating
identifiers, the proposed approach allows to break the scaling effects of attacks on
vehicle fleets that share the same platform. To the best of our knowledge, this is the
first priority optimization approach that considers scaling effects on vehicle fleets.

Since the obfuscation is determined at design time, additional security comes at no
cost at run time using the existing platform. At the same time, it has to be taken into
account that embedded devices in vehicles are often highly constrained in terms of
computational power and memory. Thus, the proposed economic solution is particularly
relevant for the automotive domain where large production numbers mandate an
efficient implementation of security mechanisms. As a result, the proposed approach
forms an obstacle for compromised devices inside the vehicle to retrieve information
about or manipulate CAN data, improving the effective confidentiality and integrity.

In Section 2, we give an overview of the proposed methodology and explain the main
design flow as well as the advantages and integration challenges for the approach.
We also present and discuss the graph-based system model and the basic response
time equations that are used throughout the paper. The methodology is based on three
stages:

— In Section 3, a QCQP approach is proposed that is capable of determining fixed
priorities for an automotive network consisting of CAN buses and ECUs with a fixed-
priority real-time operating system. We improve the approach from [Lukasiewycz et al.
2013] by avoiding an intermediate graph-representation and explicitly allowing global
cycles while determining the priorities per resource. The resulting comprehensive
formulation efficiently optimizes the average slack of tasks and serves as basis for our
bounded priority determination.

— The approach that is capable of determining priority bounds is proposed in Section 4.
Given a set of fixed priorities from the first stage, a QCQP is presented that is capable
of optimizing the bound range of message streams in terms of their priorities. That
means, the priority of any message can be chosen from a determined range while all
potential resulting schedules still satisfy existing deadline constraints.

— Given the priority bounds for messages, Section 5 presents a Monte Carlo method
to determine the specific priority assignments for each vehicle. The method in this
final stage is based on sampling and sorting such that for all test cases obfuscated
priorities are determined in less than 1ms. This short runtime makes it suitable to
obtain obfuscated CAN identifiers for an entire fleet of vehicles.

In Section 6, experimental results for a set of 500 test cases and one realistic case
study are presented and discussed. The results show that the proposed approach is very
efficient and capable of handling large systems with many ECUs and multiple CAN
buses. It is also illustrated how the average slack optimization increases the bound
range of priorities and how this in turn increases the priority diversity.
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Fig. 2. Illustration of an attack on a vehicle fleet via an exploited device ECU2 that has access to a CAN bus
and is able to send messages. If there exists a fixed priority assignment ( ) , attacks that comprise spoofing
or Denial-of-Service (DoS) might scale across the entire fleet. With priority obfuscation ( ) , the attack
does not scale as the priorities or identifiers, respectively, have a different designated purpose in each vehicle.

In Section 7, related work in the domain of CAN scheduling and automotive security
is discussed. Finally, the paper is concluded in Section 8.

2. METHODOLOGY
In the following, the proposed approach is outlined. First, we discuss attack scenarios
and how these can scale across an entire fleet. Using the proposed obfuscation of CAN
priorities, it is explained how the scaling effects can be mitigated. Subsequently, we
outline our design approach and discuss integration and maintenance challenges that
arise in case of individual CAN priorities for each vehicle. Finally, the system model
and used response time equations are introduced.

2.1. Attack Scenarios and Obfuscation
With the growing connectedness of road vehicles, the susceptibility to cyber-attacks
is rapidly increasing. A particular danger lies in scaling effects where one attack can
affect an entire fleet of vehicles that rely on the same hardware/software platform.
This scenario is illustrated in Figure 2: With fixed priorities that are the same for each
vehicle in the fleet, a compromised device like ECU2 that has access to a CAN bus can
carry out an attack by sending particular messages. In one scenario, the compromised
device can perform spoofing by sending messages with specific identifiers. This is
illustrated in Figure 2 by ECU2, sending the unencrypted message t4 to ECU3 and
manipulating its state. Note that in this example, message t4 is supposed to originate
from a different device than ECU2. An example of the consequences of this spoofing
attack might be the overwriting of the vehicle speed on the instrument cluster which
might result in threats to the safety of all traffic participants. In another scenario, a
Denial-of-Service (DoS) attack can be carried out by sending a high amount of messages
with high priorities, making the bus unavailable to other devices. Such an attack is
illustrated in Figure 2 where ECU2 sends the messages t2, t8, and t9 to another bus via
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the gateway, affecting the functionality of the safety-critical devices ECU4 and ECU5.
In order to succeed, the attacker has to know which messages are forwarded within
the gateway and in order to circumvent traffic shaping, a combination of different
messages has to be sent. This employed DoS attack might directly influence safety-
critical functions like ABS and ESP, even if the used messages are encrypted. These
two examples illustrate the potential threats with respect to integrity and availability
which due to the same priority assignment in vehicles scale across the entire fleet. In
the following it is discussed how an obfuscation of message priorities can prevent these
scaling effects.

The discussed scaling attacks can be mitigated by traditional security counter-
measures. The encryption of messages can prevent spoofing while a firewall in the
gateway can be used to avoid the DoS attack. In this context, the proposed priority
obfuscation method is orthogonal to established methods such as encryption and fire-
walls. At the same time, the operational costs of the proposed approach are lower than
encryption or firewalls which require a significant amount of additional hardware and
software. On the other hand, it should be mentioned that the proposed method requires
additional efforts in configuration and maintenance which is discussed subsequently in
this section.

In case of obfuscated priorities, the described attacks might be mitigated since the
identifiers of messages change from vehicle to vehicle as illustrated in Figure 2. The
spoofing attack loses its effectiveness as the compromised device first would have to
learn the correct identifier. In the example in Figure 2 merely the second vehicle (Vehicle
2) receives a message from the compromised ECU2 while the other two vehicles are
not affected at all. As a result, this attack does not scale. The DoS attack is as well not
effective any more since the knowledge on which message is forwarded to the other
bus is not available. For all three vehicles in Figure 2, the messages are either not
forwarded to the second bus or they are forwarded to another bus such that only t4 is
existent on the second bus in Vehicle 1 and 3. As a result, the traffic of only t4 might not
be enough to carry out a successful DoS attack on the second CAN bus. Note that a DoS
attack on the adjacent bus of ECU2 cannot be prevented with the proposed obfuscation
methodology. However, in practice devices that have external connections like ECU2

are integrated in different domains than safety-critical devices like ECU4 and ECU5

and, thus, are separated by a gateway.
The attack might be improved by letting the compromised device identify the bus

traffic, using system identification approaches such as [Di Natale and Zeng 2010].
However, sophisticated approaches to identify the traffic require computational power
and memory which can be highly constrained in ECUs. Another obstacle is the time
window in a large scale attack which might be very short as all vehicles would be
affected and with dedicated or virtual honeypots [Spitzner 2003], an Original Equipment
Manufacturer (OEM) could detect these attacks quickly. While dormant viruses are easy
to implement on general purpose computers with a lot of (unused) resources, dedicated
embedded platforms are easier to monitor for the OEMs in order to detect large scale
attacks as soon as possible.

It should be further mentioned that [Di Natale and Zeng 2010] might be applied
to identify the periods of messages and clock drifts of devices which could be used for
grouping of messages. This, however, would not be sufficient to map from obfuscated
priorities to actual priorities as many messages have the same period. Particularly,
when message splitting is applied as proposed in Section 5, a detailed system identifi-
cation with constrained resources can as a consequence be very time intensive. Thus,
priority obfuscation is an effective obstacle against attacks in automotive systems at
low cost which might be applied complementary to existing encryption and firewalls.
The proposed approach can be compared to address space randomization [Shacham

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 2015.



00:6 M. Lukasiewycz et al.

Specification Fixed Priorities Bounded Priorities

Se
ct

io
n

3

Se
ct

io
n

4

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

Section 5

Obfuscated
Priorities

(Identifiers)

Vehicle Fleet
/ Integration

· · ·

· · ·

1 2 3 4 5

Priorities

M
es

sa
ge

s

1 2 3 4 5

Priority Bounds

M
es

sa
ge

s

Priorities

M
es

sa
ge

s

Priorities
M

es
sa

ge
s

Priorities

M
es

sa
ge

s

Priorities

M
es

sa
ge

s

Fig. 3. Illustration of the proposed approach. Fixed priorities are determined from the system specification,
followed by a determination of bounded priorities. The bounds are finally used to obtain obfuscated fixed
priorities for the vehicles of a fleet.

et al. 2004] which is widely used to mitigate buffer overflow attacks by randomizing the
memory space. While the randomized memory space can be defeated as described in
the work mentioned above (under investment of significant computational power and
time), it has proved to be an effective obstacle against attacks.

2.2. Design Approach
The proposed approach to obtain obfuscated priority assignments efficiently is illus-
trated in Figure 3. In the first stage, the system specification is used to determine
fixed priorities for tasks and messages such that all end-to-end latencies are satisfied.
Note that priorities are representing corresponding CAN identifiers. The priorities are
determined such that the average slack of all tasks is optimized. This optimization is
carried out with a QCQP solver, relying on an efficient constraint formulation of the
underlying problem. In the next stage, bounded priorities for messages are determined
while the priorities of tasks are fixed. Here, each message stream is defined by a lower
bound and upper bound priority which are chosen such that all deadlines are still
satisfied. By modifying the constraint formulation from the fixed priority optimization,
a QCQP solver is used to maximize the average bound span which is defined as the
difference between the lower and upper bound priority. Note that both QCQPs are
solved directly without any relaxation or approximation. Using the bounds on message
priorities, in the final stage it is possible to obtain obfuscated priorities for each vehicle.
For this purpose, an efficient sampling and sorting approach is applied.

The three stages of our methodology are detailed in Section 3, Section 4, and Section 5.
It might be possible to combine the first and second stage into a single QCQP problem.
However, this would require a significantly more complex problem formulation and, for
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Fig. 4. Illustration of the integration and management challenges for the implementation of the proposed
obfuscation of CAN priorities. Note that the integration is performed once during the configuration of the
vehicle while the management might be carried out anytime during operation.

the sake of reducing the complexity and improving scalability, the stages are optimized
separately.

A critical factor for the proposed approach is the priority determination complexity.
Determining fixed priorities for a fleet of vehicles with a tool-based approach may
take many hours, which is generally acceptable. However, when the same approach is
used to obtain a specific priority assignment for each vehicle, it has to be taken into
account that the runtime scales linearly with the number of vehicles, leading to possibly
unacceptable runtimes. Therefore, the proposed determination of obfuscated priorities
has to be very efficient. The first two stages of our approach from the specification to
the bounded priorities may still have a runtime of a few hours as they are performed
only once. In the final stage that determines an obfuscated priority assignment for each
vehicle, a Monte Carlo sampling and sorting is used that turns out to be very fast and
robust. Thus, the requirements regarding a fast priority determination are satisfied.

2.3. Integration and Management
For the practical use of the proposed obfuscation of priorities, additional efforts in
integration and management become necessary that are outlined in the following. We
use Figure 4 to illustrate the necessary infrastructure to implement the proposed
methodology from an operational point of view.

The integration of obfuscated priorities requires the separate configuration of each
vehicle as well as a server infrastructure where the information about each vehicle is
stored securely as illustrated in Figure 4. Note that the integration step is performed
uniquely before the delivery of the respective vehicle. For each ECU, the message
filter for the CAN controller as well as the internal mapping of messages to signals
have to be configurable. Since the integration involves ECUs that are developed by
various suppliers, a unified interface has to be in place. This interface might rely on
the Universal measurement and Calibration Protocol (XCP) [Caliebe et al. 2011] with
additional authentication functions to ensure that the priorities can only be changed
by the OEM. Similar approaches will have to be applied for encryption of messages
in in-vehicle networks where each ECU will require a unique set of encryption keys.
Since this configuration requires only a small amount of data, it is possible to perform
it efficiently within a few seconds for one vehicle and wireless approaches might further
enhance this process.
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With obfuscated priorities, testing might be carried out with the known worst-case
end-to-end function response times by delaying messages. This delaying of messages
might be achieved either by a modification of the transceiver or additional messages
might be sent over the CAN bus with a separate device. Another approach might be to
determine a superset of configurations that need to be tested in order to obtain complete
coverage.

In terms of management of individual priorities per vehicle which involves diagnosis,
a service device has to obtain the CAN priorities for a certain vehicle as illustrated in
Figure 4. For this purpose, the service device has to perform an authentication. Even if
a service device is compromised, the amount of vehicle data that is provided per device
can be limited by a reasonable quota to reduce the impact of a potential security threat
significantly.

It should be noted that the mentioned data management and integration challenges
are not in the scope of this paper and suitable approaches become as well necessary
for future architectures when encryption of messages is widely used. Exemplary, a
suitable approach for encryption from the domain of vehicle-to-vehicle communication
is illustrated in [Harding et al. 2014, p. 167].

2.4. Specification
In this paper, we use a generic task graph as an application model and its mapping to
an existing architecture. A task graph is defined as GT (T,ET ) where T is a set of tasks
that also include messages. Note that in the following the terms task and message are
used interchangeably. The set of edges in the task graph ET defines data-dependencies
such that for each (t, t̃) ∈ ET , the task t̃ is released (ready for execution) when the task t
finished its execution. Thus, an event-driven activation is assumed while the approach
might be as well extended to periodic activations as discussed shortly in the constraint
definition of the end-to-end latencies in the next section.

Each task in T is executed on exactly one resource in the set A = AECU ∪ACAN ∪AGW
that comprises ECUs, CAN buses, or gateways. For the case that messages are sent via
multiple buses and gateways, each message stream is split into one task per resource
in the system model. Note that the model might be extended with an arbitrary number
of different components while we restrict it to ECUs, CAN buses, and gateways for the
sake of simplicity. All tasks that are executed on a resource a ∈ A are given as the set
Ta ⊆ T .

It is assumed that the worst-case execution time et (equiv. to transmission time for
messages) is known at design time. Moreover, each task has a period defined by ht and
it has a release jitter jt. The release jitter is either defined by the source like a sensor
or it is determined by the triggering of preceding tasks. An example of a task graph and
a mapping to a resource architecture is given in Figure 5.

2.5. Scheduling and Response Times
To determine the worst-case response times of processes or messages, respectively, we
use the recurrence equations from [Joseph and Pandya 1986] and [Davis et al. 2007],
respectively. They are of the form (1) and (2). In this context, the function p : T → N
obtains the priority of a message or task. Here, a lower value indicates a higher priority.
Preemptive Scheduling. Following the approach in [Joseph and Pandya 1986], the
maximum response time rt of a task running on a resource with a preemptive scheduler,
e.g., an ECU a ∈ AECU with an operating system using fixed priorities1, might be

1For the sake of simplicity, this paper does not differentiate between runnables and tasks as proposed in
AUTomotive Open System ARchitecture (AUTOSAR) [AUTOSAR GbR 2014].
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Fig. 5. Example of a task graph GT (T,ET ), consisting of two functions and a mapping to the resource set A
that comprises three ECUs and one CAN bus. Note that the tasks t4, t9, t10 are 8 byte messages and t2, t12
are 2 byte messages, respectively, mapped on the CAN bus with a bandwidth of 500kbit/s. Annotated are the
worst-case execution times et, deadlines τt, and periods ht.

determined. Here, all possible preemptions of tasks with a higher priority have to be
taken into account:

rt = et +
∑
t̃∈Ta

p(t̃)<p(t)

⌈
rt + jt̃
ht̃

⌉
· et̃ (1)

The response time is defined as the sum of the execution time of the task and the
execution times of all higher priority tasks that are implemented on the same resource.
The d· · · e term determines how often a task t̃ with a higher priority might preempt the
execution of task t. The response time rt exists on both sides of the equation, hence a fix
point has to be determined. Starting with rt = et, the recurrence equation will reach a
fix point if the utilization is below or equals 1.0.

Note that this formulation is only safe as long as the deadline of tasks is lower than
their period. If this is not the case, two cases have to be considered. In the first case,
the previous instance of a task is dropped when a second instance of the task is ready
for execution. Considering the discussion about arbitrary deadlines in [Tindell and
Hansson 1995], Equation (1) remains feasible in this case. In the second case, multiple
instances of the same task are queued and previous instances have to be considered,
assuming a first-come first-served policy. A safe bound that follows [Tindell and Hansson
1995] would extend Equation (1) by adding the term et · bτt/htc to rt where τt is the
deadline of the task or application, respectively. This approach has the advantage that
it is easy to implement by extending only Constraint (C4) with an additional constant
value. Another tighter approach might be to take previous instances into account,
considering their actual response time and jitter. This would require the introduction
of an additional integer variable to count the actual value of previous instances of the
same task b(rt + jt)/htc in Constraint (C4). For further reading on obtaining a tighter
bound, we would like to refer the reader to [Lehoczky 1990].
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Non-Preemptive Scheduling. Corresponding to the preemptive case, a non-
preemptive recurrence equation can be formulated that might be used for instance for
the transmission of messages on the CAN bus a ∈ ACAN. The recurrence equation for
this case is presented in [Davis et al. 2007, Eq. (16)] and defined as follows:

rt = et + wt with wt = max
t̃∈Ta

p(t̃)≥p(t)

et̃ +
∑
t̃∈Ta

p(t̃)<p(t)

⌈
wt + jt̃ + τbit

ht̃

⌉
· et̃ (2)

Note that this is a sufficient but not necessary requirement that might lead to some over-
approximation which we consider as acceptable. Due to the non-preemptive scheduling,
the maximum execution time of any task with a lower priority has to be considered as
determined by the max term. On the other hand, the execution of the considered task
cannot be preempted anymore once its execution started. Nevertheless, the task under
consideration is suspended until all higher priority tasks are sent. The amount how
often a higher priority might suspend the task under consideration is determined by
the d· · · e term where τbit is the time that the transmission of a single bit requires.

Note that the formulation might not be safe if the deadline is larger than the period
and previous instances of the same message have to be considered in case they are
queued. An extension can be done correspondingly to the discussed approach for pre-
emptive scheduling, taking previous instances of the same message into account. In the
case of a simple over-approximation as discussed in the preemptive case, this would
require to extend Constraint (C7).

In a system as illustrated in Figure 5, the response times of all tasks in the task
graph have to be calculated to determine whether each deadline τt is satisfied. Whether
a deadline is violated, is determined by considering all paths to the respective task.
Note that for the preemptive and non-preemptive scheduling, higher priority tasks with
data-dependencies (there exists a data path between the respective tasks) do not have
to be taken into account if the end-to-end deadline of the respective function is lower or
equal to their period. This is due to the fact that the data-dependent tasks of the same
function can never preempt or suspend the task under consideration. We considered
this special case in our implementation without explicitly modeling it in the presented
equations.

3. FIXED-PRIORITY SCHEDULING
In the following, the QCQP formulation is presented that is capable of determining a
feasible priority assignment for a system, considering all existing deadlines.

3.1. Constraint Encoding
Priority Assignment. In the following, the priority assignment is defined as a set
of constraints. For each ECU and CAN bus, the priority function p : T → N assigns a
unique integer to each task, resulting in a strict order per resource. Thus, the introduced
variables and constraints have to model the priority function and the resulting strict
order. For this purpose, each binary variable pt,̃t ∈ {0, 1} defines (for the tasks t, t̃ ∈ Ta
with t 6= t̃) whether t has a higher priority than t̃ (1) or not (0). Note that each resource
defines its specific pt,̃t variables within its scope which is not further annotated for the
sake of simplicity. The constraints for the priority assignment are defined as follows:
∀a ∈ AECU ∪ACAN, t, t̃ ∈ Ta, t 6= t̃ :

pt,̃t + pt̃,t = 1 (C1)
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∀a ∈ AECU ∪ACAN, t, t̃, t̂ ∈ Ta, t 6= t̃, t̃ 6= t̂, t̂ 6= t :

pt,̃t + pt̃,̂t − pt,̂t ≤ 1 (C2)

Constraint (C1) satisfies the asymmetry such that if p(t) < p(t̃), then p(t̃) < p(t) does
not hold. At the same time, the constraint ensures comparability. Constraint (C2)
models transitivity such that p(t) < p(t̃) and p(t̃) < p(t̂) implies p(t) < p(t̂). With the
requirement that t 6= t̃ for each pt,̃t, also irreflexivity is satisfied. Thus, the variables pt,̃t

model a strict order over the set of priority assignments being irreflexive, asymmetric,
and transitive.

We also define a constraint that ensures rate-monotonic scheduling which can be
used optionally. This is actually not required but may improve the QCQP solving time
significantly as the search space is reduced. The constraint is defined as follows:
∀a ∈ AECU ∪ACAN, t, t̃ ∈ Ta, ht < ht̃ :

pt,̃t = 1 (C3)

Constraint (C3) specifies that a task always has a higher priority if its period is smaller
when compared to another task. With this constraint, the optimality might be traded
off with a lower runtime. In practice, the optimality is only influenced minimally or
not at all like in our case study as discussed later while the runtime of the QCQP is
significantly reduced.
Preemptive Scheduling. Given the priority variables, it is possible to determine the
response times of tasks. For each task t, the response time is defined as the variable
rt ∈ R. Additionally, it is necessary to introduce the release jitter jt ∈ R for each task.
To encode how often a task with a higher priority might preempt the execution, the
variable ĩt,t ∈ N is introduced for each pair of tasks t̃, t ∈ Ta with t̃ 6= t. The response
time for a preemptive resource is determined by the following constraints:
∀a ∈ AECU, t ∈ Ta :

rt = et +
∑

t̃∈Ta\{t}
pt̃,t · ĩt,t · et̃ (C4)

∀a ∈ AECU, t, t̃ ∈ Ta, t 6= t̃ :

ĩt,t ≥
1

ht̃
· rt +

1

ht̃
· jt̃ (C5)

Constraint (C4) corresponds to Equation (1) where the variable pt̃,t defines whether
some other task has a higher priority and ĩt,t corresponds to the amount of preemptions
that are possible by the other task. The value of ĩt,t is determined by Constraint (C5).
Note that the variable for the number of preemptions is merely a lower bound such that
the response time might be over-approximated using these constraints. However, the
solver will ensure that the over-approximation is never higher than necessary to fulfill
all deadline constraints if a feasible solution exists.
Non-Preemptive Scheduling. Corresponding to the preemptive schedule, the con-
straints for the non-preemptive scheduling are defined in the following. The formulation
requires the additional variable bt ∈ R that encodes the maximum delay by a lower
priority task. The constraints are formulated as follows:
∀a ∈ ACAN, t ∈ Ta :

rt = et +wt (C6)

wt = bt +
∑

t̃∈Ta\{t}
pt̃,t · ĩt,t · et̃ (C7)
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bt ≥ et (C8)

∀a ∈ ACAN, t, t̃ ∈ Ta, t 6= t̃ :

bt ≥ pt,̃t · et̃ (C9)

ĩt,t ≥
1

ht̃
·wt +

1

ht̃
· jt̃ +

τbit
ht̃

(C10)

Constraint (C6) and (C7) correspond to Equation (2). Constraints (C8) and (C9), respec-
tively, determine the lower bound for the maximum delay due to a previous instance of
the task itself or a task with lower priority. Constraint (C10) determines how often a
higher priority task might suspend the considered task. Corresponding to the preemp-
tive scheduling, the constraints define a lower bound for the worst-case response time
determination which is sufficient to obtain a feasible schedule.
Fixed-Delay Scheduling. For components like gateways, in many cases the worst-
case time is specified in a data-sheet. In this case, the response time is determined as
follows:
∀a ∈ AGW, t ∈ Ta :

rt = rGW (C11)

Constraint (C11) sets the response time of tasks to a predefined worst-case value.
End-to-end latencies. In order to determine whether each deadline is satisfied, it is
necessary to calculate the delay and release jitter for each task along each path in the
task graph. Note that the proposed formulation has to consider different activation
patterns for tasks and messages, respectively. Corresponding to [Zheng et al. 2007],
the periodic and event-driven activation model can be applied. The following equations
specifically model the event-driven activation where tasks are activated once the input
data becomes available. In order to adapt the equations towards periodic activation, it
is necessary to add the task period on the right-hand-side of Constraint (C14). Whether
tasks of a function follow a periodic or event-driven activation model is a trade-off
between timeliness and composability as discussed in [Matic and Henzinger 2005].

For each task t, the delay is defined as a variable dt ∈ R and the release jitter is
defined as jt ∈ R. The constraints to determine the values of these variables and to
determine whether the deadlines are fulfilled are as follows:
∀t ∈ T,¬∃(t̃, t) ∈ ET :

dt = rt (C12)

jt = 0 (C13)

∀t ∈ T, (t̃, t) ∈ ET :

dt ≥ rt + dt̃ (C14)

jt ≥ rt̃ + jt̃ − emin
t̃ (C15)

∀t ∈ T :

dt ≤ τt (C16)
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For each task that has no predecessor, the delay and jitter are defined by the Con-
straints (C12) and (C13), respectively. Here, the initial release jitter is assumed to be 0.
It might be defined as any value other than 0 if specified by the respective sensor or
sender. In case a task has predecessors, the delay and jitter values are determined by
the Constraints (C14) and (C15), respectively. The delay is determined as the sum of
the maximum of the delays of the preceding tasks and the response time of the current
task. Correspondingly, the jitter is the maximum of the preceding task jitter values
and the current jitter which is the difference between the worst-case response time and
the best-case execution time (emin

t̃
) which might be set to 0 if it is not known. Finally,

Constraint (C16) ensures that all deadlines are satisfied by constraining the delays.

3.2. Priority Value Determination
In contrast to Integer Linear Programs (ILPs), a QCQP might also contain terms
that are quadratic, considering products of two variables. This is required here in
Constraints (C4) and (C7) that model Equations (1) and (2), respectively. In case the
QCQP is convex (as it is the case in the provided formulation), modern solvers [Gurobi
Optimization, Inc. 2015] can determine a feasible priority assignment efficiently, using
an interior point method.

The full QCQP that determines fixed priorities is defined as follows:

maximize
∑
t∈T

¬∃t̃∈T :(t,t̃)∈ET

τt − dt

subject to
Constraints (C1) – (C2)
Constraint (C3) optional
Constraints (C4) – (C16)

(QCQP1)

The objective function maximizes the sum of slacks of all functions by considering all
tasks that do not have any successors and a known deadline. Since this is at the same
time maximizing the average slack, on average the priority bounds can be determined
more flexibly in the next step. Alternatively, it would be possible to optimize the smallest
slack of all tasks by introducing an additional variable that bounds the minimal slack
of all tasks and maximizing this variable. Since the experimental results consider
the average diversity, the objective function in (QCQP1) yields better solutions than
maximizing the minimal slack which, in turn, does not consider tasks with a relatively
large slack. Note that the rate monotonic requirement in Constraint (C3) is optional. In
practice, often optimal solutions enforce a rate monotonic scheduling and in this case,
the runtime can be significantly improved. For instance, the rate monotonic constraint
has no influence on the results of our case study while reducing the runtime from more
than one hour to 9.0 s.

For the example in Figure 5, the QCQP determines the solution that corresponds to
the values in Figure 6 that shows the obtained response times, end-to-end delays, and
priorities or identifiers, respectively. The priority function is determined by the solution
values of the pt,̃t variables that define a strict order. The order is defined by

p(t) < p(t̃)⇔ pt,̃t = 1. (3)

Given the order, the priorities can be assigned accordingly, starting from 1 with the
highest priority task to n for the n-th message. Accordingly, priorities for the ECUs can
be determined.
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Fig. 6. Task graph that corresponds to the feasible priority assignment for the system in Figure 5 with the
priorities for messages. Annotated are the task response times and the end-to-end latencies. The priorities
are as follows for ECU1 p(t5) < p(t1) < p(t11), for ECU2 p(t3) < p(t7), and for ECU3 p(t6) < p(t8) < p(t13).

4. BOUNDED-PRIORITY SCHEDULING
In the following, the QCQP formulation is proposed that determines bounds for the
priorities of CAN messages. The approach uses the fixed priorities from the previous
section to determine these bounds.

4.1. Constraint Encoding
Corresponding to the function p, a priority set function P : T → 2N is defined. This set
determines all possible priorities of a task and is constrained by a lower bound and
upper bound, respectively. The set is defined such that if tasks are assigned any unique
priority per resource within their priority bounds, the end-to-end latencies are still
satisfied.

If bounded priorities are used, Equation (2) has to be adapted correspondingly. Here,
we take advantage of the monotonicity of the determination of worst-case response
times such that only the maximum amount of tasks has to be considered that might
preempt or suspend the task under consideration. This maximum amount of messages is
determined by considering the upper bounds and lower bounds of priorities, respectively,
as shown in the following.

rt = et +wt with wt = max
t̃∈Ta,t̃6=t

max{P (t̃)}≥min{P (t)}

et̃ +
∑

t̃∈Ta,t̃ 6=t
min{P (t̃)}≤max{P (t)}

⌈
wt + jt̃ + τbit

ht̃

⌉
· et̃ (4)

That means a message under consideration t might be delayed by any message t̃ that
has a smaller or equal lower priority bound compared to the upper priority bound of
t. Thus, there exists at least one scenario when t̃ might delay t. Additionally, the max
term has to be adapted such that all other messages that might in any scenario have a
lower priority (given by a larger or equal identifier) have to be considered.

For CAN buses, Equation (2) is superseded by Equation (4) in the following. However,
it is not required to adapt Constraints (C6) to (C10) in any way as these already
implicitly have the capability of modeling Equation (4). Instead, Equation (4) is modelled
by adapting constraints on the priority variables pt,̃t that are part of the non-preemptive
scheduling constraints.

The first additional constraint has to ensure that all existing priorities are considered
as follows:
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∀a ∈ AECU ∪ACAN, t, t̃ ∈ Ta, p(t) < p(t̃) :

pt,̃t = 1 (C17)

In combination with the asymmetry Constraint (C1), this defines the fixed priority
function for tasks on ECUs. Correspondingly, Constraints (C1) and (C2) are omitted
for CAN buses such that a message might have multiple priority values and, in result,
defined bounds. In this case, the variable pt,̃t ∈ {0, 1} is redefined and states whether a
task t might have a higher priority than task t̃.

To optimize the priority bounds, additional binary variables st,̃t ∈ {0, 1} are intro-
duced for messages t, t̃ ∈ Ta that are routed on the same CAN bus a ∈ ACAN. These
additional variables are only introduced for messages that satisfy p(t) < p(t̃). The vari-
able st,̃t indicates whether the priority of task t might also be lower than the priority of
task t̃ when it evaluates to 1. This shifting of priorities is expressed by the following
constraint:
∀a ∈ ACAN, t, t̂, t̃ ∈ Ta, p(t) < p(t̂) ≤ p(t̃) :

pt̂,t − st,̃t ≥ 0 (C18)

Constraint (C18) specifies that if message t is decreased in its priority such that message
t̃ has a higher priority, all messages t̂ that have their priorities between t and t̃ may
now suspend message t. Correspondingly, the binary variables pt̂,t evaluate to 1.

4.2. Priority Bound Determination
With the additional constraints, the QCQP is defined as follows:

maximize
∑

a∈ACAN,t,t̃∈Ta

p(t)<p(t̃)

st,̃t

subject to
Constraints (C1) – (C2) for a ∈ AECU

Constraint (C3) optional
Constraints (C4) – (C16)
Constraints (C17) – (C18)

(QCQP2)

The objective function maximizes the amount of priority shifting of tasks and, in result,
the average bound span over all messages. From the result of the QCQP, it is possible
to determine the priority set P (t) for each message. This is done by determining the
upper and lower bound of the set, respectively.

For the bus a ∈ ACAN, the upper bound of each task t ∈ Ta is determined as follows:

max{P (t)} = max
t̃∈Ta:
st,̃t=1

{p(t̃)} (5)

Here, the maximum priority shift is determined that represents the upper bound.
Determining the lower bound requires to consider all lower priority messages that can
be shifted beyond the task under consideration. For the bus a ∈ ACAN, the lower bound
of each task t ∈ Ta is determined as follows:

min{P (t)} = min
t̂,t̃∈Ta,p(t̃)≤p(t̂)<p(t):

st̂,t=1

{p(t̃)} (6)
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Fig. 7. Illustration of the task graph that corresponds to the feasible priority bound assignment for the
system in Figure 5, using the fixed priorities from the solution as given in Figure 6. Annotated are the task
response times and the end-to-end latencies. Those values that increased in comparison to the fixed priority
scheduling are bold. The priorities are as follows for ECU1 p(t5) < p(t1) < p(t11), for ECU2 p(t3) < p(t7),
and for ECU3 p(t6) < p(t8) < p(t13).

Here, the lower bound is defined as the priority of the task that can switch its priority
with the task under consideration. However, also all other tasks that have their original
priorities between these two tasks have to be capable of switching the priority with the
task under consideration.

Figure 7 shows the determined priority bounds for the example from Figure 5 and the
fixed priorities from Figure 6. The determined worst-case response times are increased
for all messages. The results are based on the following assignment of pt,̃t variables:

t2 t4 t10 t12 t9

t2 1 1 1 1
t4 1 1 1 1
t10 1 0 1 1
t12 1 0 1 1
t9 0 0 1 1

The grayed out 1 values in the upper right triangle are already predetermined by the
results of (QCQP1) which are set in Constraint (C17). With the remaining values in
the matrix, the shifting is determined with Equations (5) and (6), resulting in the
priority bounds in Figure 7. Since the upper bounds of the priorities of t4, t10, and t12
are larger than the fixed priorities, the end-to-end latencies of both functions are in
result increased while still satisfying all deadlines.

5. PRIORITY/IDENTIFIER SAMPLING
With the determined bounds, it becomes necessary to sample different priorities or
identifiers, respectively, for each vehicle in a final step. We propose a Monte Carlo
method that is illustrated in Figure 8 and briefly summarized in the following. The
method is applied to each CAN bus separately in a system with multiple buses that
are connected via one or more gateways. First, for each message a priority is sampled
within the defined bounds with a real value xt ∈ [min{P (t)},max{P (t)}]. In a second
step, the values are discretized by sorting the priorities by the sampled real values such
that the following equation is satisfied:

p′(t) < p′(t̃)⇔ xt < xt̃ (7)
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Fig. 8. The general priority sampling. First real values are sampled within the determined priority bounds
and subsequently these values are sorted to determine the actual priorities or identifiers, respectively.
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Fig. 9. Illustration of an enhanced obfuscation priority generation that (1) splits messages into multiple
instances to obfuscate their periods and (2) uses the full range of priorities for the assignment. The first step
prevents a simple categorization of messages by their period (here all seven messages have now the same
period of 10ms). The second step further reduces the probability that two messages have the same identifiers
for two distinct obfuscated priority assignments.

Here, p′ represents the obfuscated priorities or identifiers, respectively. This approach
is very fast as it only requires a sampling step once for each message and a final sorting
that can be implemented very efficiently. Thus, the complexity is within O(n log n)
with n being the number of messages. This polynomial time approach is significantly
faster than the previous two stages that relied on mathematical solvers which have an
exponential worst-case complexity.

The proposed sampling might be extended by further measures to increase the
obfuscation of CAN messages which are outlined in the following and illustrated in
Figure 9. This is particularly important to prevent system identification methods
like [Di Natale and Zeng 2010] to classify messages based on their periods. A single
message stream that is transmitted with a period h might be split into m message
streams with periods h ·m. Note that these message streams have a mutual offset of
h. This might be useful for our example from Figure 5 where the first function has a
period of 5ms and the second function a period of 10ms. A compromised device inside
the vehicle might quickly categorize these by profiling the bus for a short time. In
our example, the messages t2 and t4 might be split into two messages t2,0, t2,1 and
t4,0, t4,1, respectively. If these messages are sent alternatingly, an observer perceives
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for the entire system seven messages with a period of 10ms. Further profiling might
reveal offsets and information about the relation of these messages but this requires
additional time and computational power which are both constrained in an automotive
attack scenario. In summary, the optimal solution would be to identify the least common
multiple of all message periods on the bus and use this value for the message splitting.

Practically, the sampling with message splitting is implemented correspondingly to
the above mentioned sampling approach, given that enough identifiers exist. Here, a
set of random variables Xt ∈ [min{P (t)},max{P (t)}] for each message is determined. In
the next step, these values are sorted to determine a priority order for the obfuscated
priority assignment.

Finally, the full range of identifiers might be used to reduce the probability that two
messages have the same identifiers for two distinct obfuscated priority assignments.
For standard CAN, the priorities can be encoded by 11 bit, resulting in 2048 different
identifiers. For extended CAN, this number is significantly higher since the identifier
field has 29 bit. Such a randomization is a further step that is implemented with an
additional sampling to the given full range of identifiers, considering already sampled
values that form lower and upper bounds, respectively.

6. EXPERIMENTAL RESULTS
In the following, experimental results are presented that give evidence of the appli-
cability of the proposed approach. For this purpose, a set of synthetic test cases is
evaluated and a large realistic case study from the automotive domain is introduced.
All experiments have been carried out on an Intel Xeon QuadCore CPU with 3.20 GHz
and 12 GB RAM using the GUROBI QCQP solver [Gurobi Optimization, Inc. 2015].

6.1. Synthetic Test Cases
In order to show the scalability of the proposed approach and its properties in terms of
priority obfuscation, a set of 500 synthetic test cases is used. The test cases have been
randomly generated and have various complexities. The smallest test case consists of
2 ECUs, 1 CAN bus, and 2 functions with 11 tasks. The largest test case consists of 23
ECUs, 4 CAN buses connected via a central gateway, and 25 functions resulting in 294
tasks. For all test cases, deadlines have been randomly chosen to vary the possible slack
of tasks2.

First, the runtime of the proposed methodology is investigated. The runtimes of the
fixed-priority scheduling (QCQP1) and bounded-priority scheduling (QCQP2) for all
test cases are illustrated in Figure 10. Note that we use the optional Constraint (C3)
for rate-monotonic scheduling for the fixed-priority scheduling while it is omitted for
the bounded-priority scheduling. This ensures an efficient solving of (QCQP1) while it
increases the bound span for (QCQP2).

It can be observed that most of the test cases can be optimally solved within a few
seconds. For some larger test cases, the timeout of 3600 s is reached. This is the case for 6
test cases for (QCQP1) and 51 test cases for (QCQP2), which translates to around 1% of
the test cases for the fixed-priority scheduling and around 10% for the bounded-priority
scheduling. This shows that the approach is very robust and capable of obtaining
optimal solutions for most problems of our synthetic test cases. At the same time, for all
test cases that cannot be solved optimally within the given time limit, the QCQP solver
is capable of providing an optimized solution. Such an optimized solution might already
be sufficient as trade-off to the solver runtime. In this case, the optimality gap is a good
indicator determined by (ObjBound−ObjVal)/|ObjVal| where ObjBound and ObjVal are
the objective bound and best solution objective, respectively, see [Gurobi Optimization,

2All terminal tasks have a defined deadline.
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Fig. 10. Illustration of the QCQP runtimes for 500 synthetic test cases. Each point shows the runtime for
one test case for fixed-priority scheduling (QCQP1) and bounded-priority scheduling (QCQP2), respectively. A
timeout of 3600 s for both scheduling approaches is chosen.
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Fig. 11. Illustration of the relation between the average deadline slack and resulting bound span (left plot)
and the relation between the bound span and resulting priority diversity (right plot) for the 500 synthetic
test cases. The line on the left plot illustrates the linear regression while the curve on the right plot is the
inverse of x/x+ 1 which equals the probability that two sampled integers from the bound span are equal.

Inc. 2015]. Note that the optimality gap is always between 0 and 1 while the optimal
value equals to 0. For (QCQP1), the largest optimality gap is 0.0027 and for (QCQP2) it
is 0.0034. This shows that the optimized solutions are very close to optimality.

Figure 11 illustrates the relation between slack, bound span, and priority diversity.
The slack is defined for tasks t ∈ T that have a specified deadline τt as follows:

τt − dt (8)
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Table I. Summary of the clusters, ECUs, number of tasks, and periods of the functions of the case study. The number
of tasks is summarized from the tasks that are implemented on ECUs as well as routed via CAN buses and gateways.

Cluster (CAN bus) ECUs Tasks (ECU+CAN+GW) Functions / Periods (ms)
Body (CANb) 6 71 (34 + 28 + 9) 40, 40, 50, 80, 80, 80
Driver Assistance (CANd) 3 74 (31 + 31 + 12) 5, 10, 20, 40, 80, 80
Chassis (CANc) 4 97 (36 + 43 + 18) 10, 20, 40, 40, 50, 50, 100
Infotainment (CANi) 4 38 (16 + 16 + 6) 5, 80, 100
Powertrain (CANa) 8 52 (32 + 19 + 1) 5, 10, 40, 50, 50, 80

System 25 332 (149 + 137 + 46)

Note that the objective function of (QCQP1) is maximizing the slack. This slack has a
direct relation to the bound span of a message t that is obtained from (QCQP2) and
defined as follows:

max{P (t)} −min{P (t)} (9)
It can be seen in Figure 11 that a larger slack after the first stage generally leads to a
larger bound span after the second stage. Note that the values for the slack and bound
span are calculated as average per test case. This shows that a maximization of the
slack in the first stage is a good choice as a larger bound span is desirable towards a
better obfuscation as shown in the following.

The obfuscation quality is determined by sampling a sufficiently large set of prior-
ity assignments in stage three and comparing these mutually. We sampled a set of
1000 priority assignments for each test case while the sampling in each case always
required less than 1ms. The obfuscation quality is measured by a diversity value that
is determined for a task t ∈ T of two priority assignments as follows:

|sgn(p′(t)− p′′(t))| (10)
Here, p′ and p′′, respectively, denote the priorities in the specific assignment. Note that
we used the sampling method as illustrated in Figure 8 such that the resulting value
from Equation (10) is meaningful. Considering the average over all tasks and priority
assignments per test case, a higher value indicates a higher diversity and, thus, a better
obfuscation quality. It can be observed that a larger bound span clearly increases the
obfuscation quality.

6.2. Case Study
In order to give evidence of the applicability of the proposed methodology for realistic
problems, the case study from [Lukasiewycz et al. 2013] is used. The case study consists
of five CAN buses that define clusters and a central gateway that interconnects these
clusters. Note that the functions in each cluster are not solely mapped to ECUs of this
cluster such that it is not possible to determine the priorities for each cluster separately.
The details of the case study are summarized in Table I which also illustrates the
periods of the functions in each cluster. Overall, the case study consists of 25 ECUs
and 27 functions that result in 332 tasks. In summary, 149 tasks are implemented on
the ECUs that require a feasible priority assignment while 137 priorities have to be
assigned to the existing message tasks that are routed via CAN buses. Note that these
137 message tasks are obtained from 88 message streams from which some are routed
via the gateway. The number of message tasks that are routed via the gateway is 46
and a fixed worst-case delay of 1ms in the gateway is assumed. The utilization with
respect to the considered functions for the buses CANb, CANd, CANc, CANi, and CANa

is 20.6%, 24.5%, 16.6%, 22.1%, and 33.8%, respectively. Note that the actual utilization is
higher due to low priority messages that have very large deadlines and these messages
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Fig. 12. Illustration of the fixed priorities ( ) and bounded priorities ( ) for 88 message streams on 5 CAN
buses in the proposed case study. The messages are ordered by clusters and functions.
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Fig. 13. Illustration of the relation between the average deadline slack and resulting bound span (left plot)
and the relation between the bound span and resulting priority diversity (right plot) for the case study. The
line on the left plot illustrates the linear regression while the curve on the right plot is the inverse of x/x+ 1
which equals the probability that two sampled integers from the bound span are equal.

are, therefore, not considered. In summary, the case study has tight function slacks in
relation to the periods which are shown in Table I, respectively.

With the proposed methodology, it is possible to determine a feasible fixed-priority
assignment within 8.1 s using (QCQP1). The runtime of (QCQP2) exceeded the timeout
of 3600 s with a very small optimality gap of 0.0034. Although the optimization is aborted
due to the timeout, the resulting average bound span is relatively high with a value
of 9.36. A detailed illustration of all fixed priorities and bounded priorities for the case
study are illustrated in Figure 12. With an average bound span of 9.36 and 137 distinct
priorities for message streams, it is possible to approximate the number of distinct
priority assignments to 9.36137 = 1.16 · 10133. This value shows that the probability that
two vehicles from an entire fleet have the exactly same priority assignment is negligibly
small. For a certain function with x messages, the number of distinct priorities can be
correspondingly approximated by 9.36x. For instance, in the case of four messages, the
probability that two vehicles have the identical priority assignment is around 0.01%.
Note that with the techniques of message splitting and random sampling of identifiers
as illustrated in Figure 9, the priorities are further obfuscated.

Figure 13 illustrates the relation between slack, bound span, and priority diversity
for the case study. The results are visualized correspondingly to the synthetic test cases
except that the average is calculated for each message while the slack is determined for
the function of the considered message. These results show again a relation between
the slack and bound span as well as the bound span and priority diversity. Note that
the sampling of priorities for this large test case never required more than 1ms.

7. RELATED WORK
This section gives an overview of related work in the domain of systems with fixed-
priority scheduling and the related priority assignment problem. Additionally, we
discuss related work in the field of automotive security.

7.1. Fixed-Priority Scheduling
A real-time analysis for priority-based schedulers with predefined priorities might
be done efficiently using response-time analysis. A general approach for preemptive
systems is presented in [Joseph and Pandya 1986] which might be applied to ECUs
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with OSEK or AUTOSAR OS schedulers. For non-preemptive systems like the CAN
bus, the method is adapted in [Tindell et al. 1995] and later revised in [Davis et al.
2007]. Both approaches are applied in our paper and explained in Section 2. In general,
the priorities of these systems are defined in the integration phase in order to satisfy
all deadlines.

General priority optimization of messages and tasks, respectively, can be done with
heuristics or exact approaches using mathematical programming solvers. Meta-heuristic
approaches such as presented in [Hamann et al. 2004] rely on Evolutionary Algorithms
(EAs) or Simulated Annealing (SA) to optimize the priorities of messages and tasks.
The randomness of these approaches might be used to obtain obfuscated priority
assignments. However, in practice these heuristic approaches do not perform well
when the deadline constraints are tight and at the same time the runtime becomes
unacceptably large.

Other approaches to determine task and message priorities as presented in [Met-
zner and Herde 2006; Reimann et al. 2010; Reimann et al. 2011] are applied within
an architectural decision process and rely on iterative pruning. In each iteration, a
priority assignment is determined and analyzed such that in case of violated deadline
constraints, a part of the search space is pruned. However, as discussed in [Lukasiewycz
et al. 2013], pruning infeasible solutions does not scale well and is, therefore, not
applicable to large and realistic problems.

An approach to tackle the priority assignment problem with an ILP is presented
in [Lisper and Mellgren 2001] where applications cannot be defined in general but are
restricted to chains of tasks and the problem has to be linearized, introducing a high
number of additional constraints and variables. This approach was extended towards
QCQP in [Lukasiewycz et al. 2013], showing a compact problem representation and very
good scalability. In this paper, we have extended [Lukasiewycz et al. 2013] for the first
stage by avoiding an intermediate graph representation. As a result, the formulation
becomes even easier to understand, implement, and as a result more extensible.

All mentioned approaches focus merely on the task of obtaining a single feasible fixed-
priority assignment as it is necessary in our first step (QCQP1). While our formulation
in the first step improves the state-of-the-art in [Lukasiewycz et al. 2013], stage two
and three, that provide the priority bounds and obfuscation by sampling, are to the best
of our knowledge not considered by any related work. Thus, the correlation between
existing message priorities and scaling effects on vehicle fleets are for the first time
considered in the work at hand.

Finally, it should be mentioned that obfuscation techniques might be also combined
with other aspects of scheduling. For instance, an approach like [Davare et al. 2007]
that optimizes the periods might be used to obtain systems with different periods
of messages. By considering work like [Zhu et al. 2012] that concurrently optimizes
task priorities and task distribution, the obfuscation might also involve task mapping
aspects.

7.2. Automotive Security
Several approaches in the context of automotive security have been published in lit-
erature. In [Koscher et al. 2010; Checkoway et al. 2011], an undisclosed vehicle has
been analyzed for its security properties where scaling effects in vehicle fleets are
mentioned as a major concern. Due to the similar nature of vehicle models, exploits and
viruses can easily affect entire fleets. More recently, in [Miller and Valasek 2013; 2014]
in-vehicle networks have been categorized in terms of security based on their CAN
structure. With many internal communication systems being increasingly connected to
external networks via wireless connections, the risk of access by unauthorized parties
is increasing significantly. To counter vehicle attacks, an intrusion detection system is
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proposed. A recent overview of security challenges is given in [Sagstetter et al. 2013]
where security threats are classified by attack vector and application domain.

Multiple different protection mechanisms have been proposed for automotive net-
works and other resource-constrained embedded communication systems. In [Zalman
and Mayer 2014], Message Authentication Codes (MACs) are introduced to ensure
end-to-end protection of messages against alteration and replay attacks. MACs are
integrated with error correction of conventional communication systems such that the
overhead is minimized. In [Lin et al. 2013], message security through MACs is combined
with a Mixed Integer Linear Programming (MILP) to schedule messages efficiently
on a CAN bus with minimal overhead. The MILP is further modified in [Lin et al.
2014] to reduce the computational complexity. In [Han et al. 2014], a time-released key
system is employed to secure time-triggered FlexRay communication. A MAC is used
to protect messages, ensuring integrity and securing against replay attacks. Messages
are scheduled efficiently with a MILP, considering the added security requirements. In
[Mundhenk et al. 2015] an authentication mechanism for ECUs is presented, allowing
fast and efficient authentication of ECUs and authorization of message streams.

The abovementioned approaches utilize MACs to ensure message integrity or focus
on authentication and authorization for bus integrity. In this paper, we do not consider
protection in the classic security categories confidentiality, integrity and availability.
Instead, we target scaling effects on vehicle fleets. Due to the large number of identical
vehicles, an attack developed on one vehicle instance might easily scale to the complete
fleet of vehicles. Our proposed approach allows to find multiple solutions to a given
CAN message priority assignment problem which can be employed across the vehicle
fleet. Thus, we mitigate the impact of any broken security measure as any attack can
only be applied to a very limited number of vehicles. Our approach can flexibly be
extended with security mechanisms as proposed in literature. This allows to protect
confidentiality, integrity and availability while mitigating scaling effects.

Exemplary, in [Woo et al. 2014], an attack on an after-market OBD adapter via a
malicious smartphone application is described. These adapters offer diagnosis and
logging functions for drivers are for instance connected via Bluetooth. By bridging these
external connections to the OBD port, a significant attack vector is created. As these
devices are sold at low prices in high volumes, the impact across vehicles is significant.
By running one attack against multiple vehicles of one model or manufacturer, con-
siderable damage can be achieved. With our proposed approach such an attack does
not scale as every vehicle is using obfuscated CAN identifiers and needs to be analyzed
(and attacked) separately to create significant impact.

8. CONCLUDING REMARKS
This paper presents an approach to determine obfuscated identifiers for CAN platforms,
considering real-time constraints. Orthogonally to encryption and firewalls, obfuscated
priorities increase the security of CAN buses by mitigating scaling effects. This is par-
ticularly important in automotive applications where cost-effective security approaches
are necessary. The proposed approach is using QCQP to first determine fixed priorities
which are subsequently extended to priority bounds. While this bound determination is
computationally expensive, it is required only once in the design process. In order to
determine a specific priority assignment by sampling within the bounded priorities, a
very efficient approach is introduced that for all test cases never requires more than 1ms
per vehicle. Our test cases and case study show that CAN identifiers can be effectively
obfuscated with the proposed methodology.

The actual integration and management of these obfuscated priorities is not in
the scope of this paper. However, since encryption is incrementally introduced in the
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automotive domain, handling obfuscated priorities may utilize the same integration
and management approaches that are used for authentication and encryption keys.
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